Skip to contents

Calculates the centroid locations for the polygons within one or more selected layers

Usage

addSpatialCentroidLocations(
  gobject,
  poly_info = "cell",
  feat_type = NULL,
  spat_loc_name = "raw",
  provenance = poly_info,
  return_gobject = TRUE,
  verbose = TRUE
)

Arguments

gobject

giotto object

poly_info

polygon information

feat_type

feature type

spat_loc_name

name to give to the created spatial locations

provenance

(optional) provenance to assign to generated spatLocsObj. If not provided, provenance will default to poly_info

return_gobject

return giotto object (default: TRUE)

verbose

be verbose

Value

If return_gobject = TRUE the giotto object containing the calculated polygon centroids will be returned. If return_gobject = FALSE only the generated polygon centroids will be returned as spatLocObj.

Examples

g <- GiottoData::loadGiottoMini("vizgen")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#>  active environment : 'giotto_env'
#>  python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#>  "/usr/share/miniconda/envs/giotto_env/bin/python"

addSpatialCentroidLocations(g, poly_info = "aggregate")
#> Start centroid calculation for polygon information
#>  layer: aggregate
#> > spatial locations for polygon information layer " aggregate " and name " raw
#>  " already exists and will be replaced
#> An object of class giotto 
#> >Active spat_unit:  z0 
#> >Active feat_type:  rna 
#> dimensions    : 337, 498 (features, cells)
#> [SUBCELLULAR INFO]
#> polygons      : z0 z1 aggregate 
#> features      : rna 
#> [AGGREGATE INFO]
#> expression -----------------------
#>   [z0][rna] raw
#>   [z1][rna] raw
#>   [aggregate][rna] raw normalized scaled pearson
#> spatial locations ----------------
#>   [z0] raw
#>   [z1] raw
#>   [aggregate] raw
#> spatial networks -----------------
#>   [aggregate] Delaunay_network kNN_network
#> spatial enrichments --------------
#>   [aggregate][rna] cluster_metagene
#> dim reduction --------------------
#>   [aggregate][rna] pca umap tsne
#> nearest neighbor networks --------
#>   [aggregate][rna] sNN.pca
#> attached images ------------------
#> images      : 4 items...
#> 
#> 
#> Use objHistory() to see steps and params used