Skip to contents

combine cell data information

Usage

combineCellData(
  gobject,
  feat_type = "rna",
  include_spat_locs = TRUE,
  spat_loc_name = "raw",
  include_poly_info = TRUE,
  poly_info = "cell",
  include_spat_enr = TRUE,
  spat_enr_names = NULL
)

Arguments

gobject

giotto object

feat_type

feature type

include_spat_locs

include information about spatial locations

spat_loc_name

spatial location name

include_poly_info

include information about polygon

poly_info

polygon information name

include_spat_enr

include information about spatial enrichment

spat_enr_names

names of spatial enrichment results to include

Value

data.table with combined spatial information

Examples

g <- GiottoData::loadGiottoMini("vizgen")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#>  active environment : 'giotto_env'
#>  python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#>  "/usr/share/miniconda/envs/giotto_env/bin/python"

combineCellData(g, poly_info = "aggregate")
#> $rna
#> Key: <cell_ID>
#>                                        cell_ID    sdimx     sdimy  geom  part
#>                                         <char>    <num>     <num> <int> <num>
#>     1: 100210519278873141813371229408401071444 6637.881 -5140.465     1     1
#>     2: 100210519278873141813371229408401071444 6637.881 -5140.465     1     1
#>     3: 100210519278873141813371229408401071444 6637.881 -5140.465     1     1
#>     4: 100210519278873141813371229408401071444 6637.881 -5140.465     1     1
#>     5: 100210519278873141813371229408401071444 6637.881 -5140.465     1     1
#>    ---                                                                       
#> 35971:  98561957902191275233320065611022298397 6784.848 -4942.076   462     1
#> 35972:  98561957902191275233320065611022298397 6784.848 -4942.076   462     1
#> 35973:  98561957902191275233320065611022298397 6784.848 -4942.076   462     1
#> 35974:  98561957902191275233320065611022298397 6784.848 -4942.076   462     1
#> 35975:  98561957902191275233320065611022298397 6784.848 -4942.076   462     1
#>               x         y  hole  stack agg_n valid nr_feats perc_feats
#>           <num>     <num> <num> <char> <num> <int>    <int>      <num>
#>     1: 6642.257 -5136.674     0   <NA>     2     1       22    6.52819
#>     2: 6642.711 -5137.020     0   <NA>     2     1       22    6.52819
#>     3: 6643.050 -5137.462     0   <NA>     2     1       22    6.52819
#>     4: 6643.310 -5137.956     0   <NA>     2     1       22    6.52819
#>     5: 6643.484 -5138.518     0   <NA>     2     1       22    6.52819
#>    ---                                                                
#> 35971: 6788.764 -4942.998     0   <NA>     2     1       53   15.72700
#> 35972: 6788.905 -4942.999     0   <NA>     2     1       53   15.72700
#> 35973: 6789.575 -4942.999     0   <NA>     2     1       53   15.72700
#> 35974: 6789.576 -4943.000     0   <NA>     2     1       53   15.72700
#> 35975: 6789.695 -4943.000     0   <NA>     2     1       53   15.72700
#>        total_expr leiden_clus louvain_clus   feat
#>             <num>       <num>        <num> <char>
#>     1:   163.6923           4           15    rna
#>     2:   163.6923           4           15    rna
#>     3:   163.6923           4           15    rna
#>     4:   163.6923           4           15    rna
#>     5:   163.6923           4           15    rna
#>    ---                                           
#> 35971:   326.0539           1           26    rna
#> 35972:   326.0539           1           26    rna
#> 35973:   326.0539           1           26    rna
#> 35974:   326.0539           1           26    rna
#> 35975:   326.0539           1           26    rna
#>