Skip to contents

Print and return giotto object history

Usage

objHistory(object, summarized = FALSE)

Arguments

object

giotto object

summarized

logical. whether print should be summarized

Value

list

Examples

g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#>  active environment : 'giotto_env'
#>  python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#>  "/usr/share/miniconda/envs/giotto_env/bin/python"

objHistory(g)
#> Steps and parameters used:
#> <0_normalize>
#>   gobject           : mini_visium
#>   expression_values : raw
#>   norm_methods      : standard
#>   library_size_norm : TRUE
#>   scalefactor       : 6000
#>   log_norm          : TRUE
#>   log_offset        : 1
#>   logbase           : 2
#>   scale_feats       : TRUE
#>   scale_cells       : TRUE
#>   scale_order       : first_feats
#>   theta             : 100
#>   update_slot       : scaled
#>   verbose           : T
#> <1_subset>
#>   gobject         : gobject
#>   spat_unit       : spat_unit
#>   feat_type       : feat_type
#>   cell_ids        : selected_cell_ids
#>   feat_ids        : selected_feat_ids
#>   poly_info       : poly_info
#>   spat_unit_fsub  : spat_unit_fsub
#>   feat_type_ssub  : feat_type_ssub
#>   verbose         : verbose
#>   toplevel_params : 2
#> <2_filter>
#>   gobject                : mini_visium
#>   expression_values      : raw
#>   expression_threshold   : 1
#>   feat_det_in_min_cells  : 5
#>   min_det_feats_per_cell : 20
#>   spat_unit_fsub         : :all:
#>   feat_type_ssub         : :all:
#>   tag_cells              : FALSE
#>   tag_cell_name          : tag
#>   tag_feats              : FALSE
#>   tag_feats_name         : tag
#>   verbose                : T
#> <3_feat_stats>
#>   gobject             : mini_visium
#>   expression_values   : normalized
#>   detection_threshold : 0
#>   return_gobject      : TRUE
#>   verbose             : TRUE
#> <4_cell_stats>
#>   gobject             : mini_visium
#>   expression_values   : normalized
#>   detection_threshold : 0
#>   return_gobject      : TRUE
#>   verbose             : TRUE
#> <5_hvf>
#>   gobject              : mini_visium
#>   expression_values    : normalized
#>   method               : cov_groups
#>   reverse_log_scale    : FALSE
#>   logbase              : 2
#>   expression_threshold : 0
#>   nr_expression_groups : 20
#>   zscore_threshold     : 1.5
#>   HVFname              : hvf
#>   difference_in_cov    : 0.1
#>   var_threshold        : 1.5
#>   set_seed             : TRUE
#>   seed_number          : 1234
#>   save_param           : list()
#>   default_save_name    : HVFplot
#>   return_gobject       : TRUE
#>   verbose              : TRUE
#> <6_pca>
#>   gobject           : mini_visium
#>   expression_values : normalized
#>   reduction         : cells
#>   return_gobject    : TRUE
#>   center            : TRUE
#>   scale_unit        : TRUE
#>   ncp               : 100
#>   method            : irlba
#>   method_params     : BiocParallel::SerialParam()
#>   rev               : FALSE
#>   set_seed          : TRUE
#>   seed_number       : 1234
#>   verbose           : TRUE
#>   ...               : 
#> <7_umap>
#>   gobject              : mini_visium
#>   expression_values    : normalized
#>   reduction            : cells
#>   dim_reduction_to_use : pca
#>   dimensions_to_use    : 1:10
#>   return_gobject       : TRUE
#>   n_neighbors          : 40
#>   n_components         : 2
#>   n_epochs             : 400
#>   min_dist             : 0.01
#>   n_threads            : NA
#>   spread               : 5
#>   set_seed             : TRUE
#>   seed_number          : 1234
#>   verbose              : TRUE
#>   toplevel_params      : 2
#>   ...                  : 
#> <8_tsne>
#>   gobject              : mini_visium
#>   expression_values    : normalized
#>   reduction            : cells
#>   dim_reduction_to_use : pca
#>   dimensions_to_use    : 1:10
#>   return_gobject       : TRUE
#>   dims                 : 2
#>   perplexity           : 30
#>   theta                : 0.5
#>   do_PCA_first         : FALSE
#>   set_seed             : TRUE
#>   seed_number          : 1234
#>   verbose              : TRUE
#>   ...                  : 
#> <9_nn_network>
#>   gobject              : mini_visium
#>   type                 : sNN
#>   dim_reduction_to_use : pca
#>   dimensions_to_use    : 1:5
#>   expression_values    : normalized
#>   return_gobject       : TRUE
#>   k                    : 10
#>   minimum_shared       : 5
#>   top_shared           : 3
#>   verbose              : TRUE
#>   ...                  : 
#> <10_cluster>
#>   gobject           : mini_visium
#>   name              : leiden_clus
#>   nn_network_to_use : sNN
#>   network_name      : sNN.pca
#>   resolution        : 0.1
#>   weight_col        : weight
#>   partition_type    : RBConfigurationVertexPartition
#>   n_iterations      : 1000
#>   return_gobject    : TRUE
#>   set_seed          : TRUE
#>   seed_number       : 1234
#> <11_delaunay_spatial_network>
#>   dimensions used            : dimensions: sdimx and sdimy
#>   method                     : deldir
#>   maximum distance threshold : auto
#>   name of spatial network    : Delaunay_network
#> <12_spatial_network>
#>   k neighbours               : 10
#>   dimensions used            : all
#>   maximum distance threshold : 400
#>   name of spatial network    : spatial_network
#> <13_create_metafeat>
#>   gobject           : mini_visium
#>   expression_values : normalized
#>   feat_clusters     : cluster_genes
#>   stat              : mean
#>   name              : cluster_metagene
#>   return_gobject    : TRUE
#> <14_pca>
#>   gobject           : mini_visium
#>   expression_values : normalized
#>   reduction         : cells
#>   name              : custom_pca
#>   feats_to_use      : my_spatial_genes
#>   return_gobject    : TRUE
#>   center            : TRUE
#>   scale_unit        : TRUE
#>   ncp               : 100
#>   method            : irlba
#>   method_params     : BiocParallel::SerialParam()
#>   rev               : FALSE
#>   set_seed          : TRUE
#>   seed_number       : 1234
#>   verbose           : TRUE
#>   ...               : 
#> <15_umap>
#>   gobject              : mini_visium
#>   expression_values    : normalized
#>   reduction            : cells
#>   dim_reduction_to_use : pca
#>   dim_reduction_name   : custom_pca
#>   dimensions_to_use    : 1:20
#>   name                 : custom_umap
#>   return_gobject       : TRUE
#>   n_neighbors          : 40
#>   n_components         : 2
#>   n_epochs             : 400
#>   min_dist             : 0.01
#>   n_threads            : NA
#>   spread               : 5
#>   set_seed             : TRUE
#>   seed_number          : 1234
#>   verbose              : TRUE
#>   toplevel_params      : 2
#>   ...                  : 
#> <16_nn_network>
#>   gobject              : mini_visium
#>   type                 : sNN
#>   dim_reduction_to_use : pca
#>   dim_reduction_name   : custom_pca
#>   dimensions_to_use    : 1:20
#>   expression_values    : normalized
#>   name                 : custom_NN
#>   return_gobject       : TRUE
#>   k                    : 5
#>   minimum_shared       : 5
#>   top_shared           : 3
#>   verbose              : TRUE
#>   ...                  : 
#> <17_cluster>
#>   gobject           : mini_visium
#>   name              : custom_leiden
#>   nn_network_to_use : sNN
#>   network_name      : custom_NN
#>   resolution        : 0.15
#>   weight_col        : weight
#>   partition_type    : RBConfigurationVertexPartition
#>   n_iterations      : 1000
#>   return_gobject    : TRUE
#>   set_seed          : TRUE
#>   seed_number       : 1234
#> <18_spatial_deconvolution>
#>   method used              : DWLS
#>   deconvolution name       : DWLS
#>   expression values        : normalized
#>   logbase                  : 2
#>   cluster column used      : leiden_clus
#>   number of cells per spot : 50
#>   used cut off             : 2
#> <19_spatial_deconvolution>
#>   method used              : DWLS
#>   deconvolution name       : DWLS
#>   expression values        : normalized
#>   logbase                  : 2
#>   cluster column used      : leiden_clus
#>   number of cells per spot : 50
#>   used cut off             : 2
#> <20_spatial_deconvolution>
#>   method used              : DWLS
#>   deconvolution name       : DWLS
#>   expression values        : normalized
#>   logbase                  : 2
#>   cluster column used      : leiden_clus
#>   number of cells per spot : 50
#>   used cut off             : 2
objHistory(g, summarized = TRUE)
#> Processing steps:
#> 0_normalize
#> 1_subset
#> 2_filter
#> name info: tag tag
#> 3_feat_stats
#> 4_cell_stats
#> 5_hvf
#> name info: hvf HVFplot
#> 6_pca
#> 7_umap
#> 8_tsne
#> 9_nn_network
#> 10_cluster
#> name info: leiden_clus sNN.pca
#> 11_delaunay_spatial_network
#> name info: Delaunay_network
#> 12_spatial_network
#> name info: spatial_network
#> 13_create_metafeat
#> name info: cluster_metagene
#> 14_pca
#> name info: custom_pca
#> 15_umap
#> name info: custom_pca custom_umap
#> 16_nn_network
#> name info: custom_pca custom_NN
#> 17_cluster
#> name info: custom_leiden custom_NN
#> 18_spatial_deconvolution
#> name info: DWLS
#> 19_spatial_deconvolution
#> name info: DWLS
#> 20_spatial_deconvolution
#> name info: DWLS