Subsets Giotto object spatially by defining a set of
cropping bounds. The information to be subset is preferred to be from spatial
locations. If no spat_loc_name
is given, the first available set of
spatial locations for the spat_unit
will be picked.
If no spatial locations are available, the polygon information will be
subset. Spatial IDs surviving the crop are then applied to the rest of the
Giotto object using subsetGiotto.
Usage
subsetGiottoLocs(
gobject,
spat_unit = NULL,
feat_type = NULL,
feat_type_ssub = ":all:",
spat_loc_name = NULL,
x_max = NULL,
x_min = NULL,
y_max = NULL,
y_min = NULL,
z_max = NULL,
z_min = NULL,
poly_info = NULL,
return_gobject = TRUE,
verbose = FALSE,
toplevel_params = 5
)
Arguments
- gobject
giotto object
- spat_unit
spatial unit to subset
- feat_type
(optional) feat type to use if
return_gobject = TRUE
and a combined data.table output is desired.- feat_type_ssub
which feat types across which to apply the spatial subset
- spat_loc_name
name of spatial locations to use within spat_unit
- x_max, x_min, y_max, y_min, z_max, z_min
minimum and maximum x, y, and z coordinates to subset to
- poly_info
character. polygon information to subset (considered separately from the spat_units to subset)
- return_gobject
return Giotto object
- verbose
be verbose
- toplevel_params
parameters to extract
Examples
g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#> active environment : 'giotto_env'
#> python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#> "/usr/share/miniconda/envs/giotto_env/bin/python"
subsetGiottoLocs(g, x_max = 4000, y_max = -1000)
#> An object of class giotto
#> >Active spat_unit: cell
#> >Active feat_type: rna
#> dimensions : 634, 175 (features, cells)
#> [SUBCELLULAR INFO]
#> polygons : cell
#> [AGGREGATE INFO]
#> expression -----------------------
#> [cell][rna] raw normalized scaled
#> spatial locations ----------------
#> [cell] raw
#> spatial networks -----------------
#> [cell] Delaunay_network spatial_network
#> spatial enrichments --------------
#> [cell][rna] cluster_metagene DWLS
#> dim reduction --------------------
#> [cell][rna] pca custom_pca umap custom_umap tsne
#> nearest neighbor networks --------
#> [cell][rna] sNN.pca custom_NN
#> attached images ------------------
#> images : alignment image
#>
#>
#> Use objHistory() to see steps and params used