Get a multiomics integration result from a Giotto object
Usage
get_multiomics(
gobject,
spat_unit = NULL,
feat_type = NULL,
integration_method = "WNN",
result_name = "theta_weighted_matrix"
)
See also
Other multiomics accessor functions:
getMultiomics()
,
setMultiomics()
,
set_multiomics()
Other functions to get data from giotto object:
getCellMetadata()
,
getDimReduction()
,
getExpression()
,
getFeatureInfo()
,
getFeatureMetadata()
,
getGiottoImage()
,
getMultiomics()
,
getNearestNetwork()
,
getPolygonInfo()
,
getSpatialEnrichment()
,
getSpatialGrid()
,
getSpatialLocations()
,
getSpatialNetwork()
Examples
g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#> active environment : 'giotto_env'
#> python version : 3.10
g <- setMultiomics(
gobject = g, result = matrix(rnorm(100), nrow = 10),
spat_unit = "cell", feat_type = "rna_protein"
)
get_multiomics(gobject = g, spat_unit = "cell", feat_type = "rna_protein")
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 2.35584224 0.60109578 0.21107021 -0.1929415 -0.4518673 -0.29697270
#> [2,] -0.07829679 0.09118194 -1.10175805 1.2685203 0.2796521 0.13122693
#> [3,] -2.48334004 -0.32197855 0.39341368 1.6365113 -0.9323407 -1.56495310
#> [4,] 0.40703514 -2.12245121 1.82474216 -0.7338841 0.4217614 -0.82422792
#> [5,] -2.09087675 -0.34599898 1.26347435 -1.1241179 0.8055708 1.73397408
#> [6,] -0.92110647 -0.48001955 1.68331051 -0.4216800 -0.7100369 -1.63798556
#> [7,] 0.59907492 -0.42998550 0.95805295 0.4735953 0.3198127 0.40419912
#> [8,] -0.43413197 -2.07498956 1.60617521 0.9768600 0.9921510 0.08658439
#> [9,] 0.83620429 0.11144165 0.07428736 -0.3543777 -0.4675122 -0.45354911
#> [10,] -0.72578170 -1.15421265 1.97654017 -0.6908579 -0.2283285 -0.54641552
#> [,7] [,8] [,9] [,10]
#> [1,] -0.01955325 -1.84926159 0.89130758 -2.70348138
#> [2,] -0.46762272 0.56145707 1.62758122 0.29038123
#> [3,] -0.16431026 -0.34883770 -1.23260939 -0.68073576
#> [4,] 1.69912784 -0.13678616 0.68610440 0.31861027
#> [5,] -1.14369864 -1.19301887 -2.45123127 -0.69780454
#> [6,] -0.12154774 0.03095702 -1.89533742 1.26014919
#> [7,] -0.29105927 0.23291895 0.09237754 1.27863214
#> [8,] -0.24844333 -1.33143153 -0.39016194 1.36949166
#> [9,] -0.11181289 -0.46128145 1.60620252 0.01060681
#> [10,] 0.23792348 0.08372638 -0.60965213 -0.67390639