Saves a Giotto object to a specific folder structure
Usage
loadGiotto(
path_to_folder,
load_params = list(),
reconnect_giottoImage = TRUE,
python_path = NULL,
init_gobject = TRUE,
verbose = TRUE
)
Arguments
- path_to_folder
path to folder where Giotto object was stored with
saveGiotto
- load_params
additional parameters for loading or reading giotto object
- reconnect_giottoImage
(default = TRUE) whether to attempt reconnection of magick based image objects
- python_path
(optional) manually set your python path
- init_gobject
logical. Whether to initialize the
giotto
object after loading. (default = TRUE)- verbose
be verbose
Details
Works together with saveGiotto
to save and re-load
Giotto objects.
Additional load_params need to be provided as a list and will
go to readRDS
or qread
You can set the python path, alternatively it will look for an existing
Giotto python environment.
Examples
g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#> active environment : 'giotto_env'
#> python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#> "/usr/share/miniconda/envs/giotto_env/bin/python"
td <- tempdir()
saveGiotto(gobject = g, dir = td)
#> 1. Start writing feature information
#> 2. Start writing spatial information
#> For spatial information: cell
#> 3. Start writing image information
#> For image information: alignment
#> For image information: image
loadGiotto(path_to_folder = paste0(td, "/saveGiottoDir"))
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#> active environment : 'giotto_env'
#> python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#> "/usr/share/miniconda/envs/giotto_env/bin/python"
#> An object of class giotto
#> >Active spat_unit: cell
#> >Active feat_type: rna
#> [SUBCELLULAR INFO]
#> polygons : cell
#> [AGGREGATE INFO]
#> expression -----------------------
#> [cell][rna] raw normalized scaled
#> spatial locations ----------------
#> [cell] raw
#> spatial networks -----------------
#> [cell] Delaunay_network spatial_network
#> spatial enrichments --------------
#> [cell][rna] cluster_metagene DWLS
#> dim reduction --------------------
#> [cell][rna] pca custom_pca umap custom_umap tsne
#> nearest neighbor networks --------
#> [cell][rna] sNN.pca custom_NN
#> attached images ------------------
#> images : alignment image
#>
#>
#> Use objHistory() to see steps and params used