Skip to contents

Set giotto polygon spatVector for features

Usage

setFeatureInfo(
  gobject,
  x,
  feat_type = NULL,
  verbose = TRUE,
  initialize = TRUE,
  ...
)

Arguments

gobject

giotto object

x

giottoPoints object or list of giottoPoints to set. Passing NULL will remove the specified giottoPoints object from the giotto object

feat_type

feature type (e.g. "rna", "dna", "protein")

verbose

be verbose

initialize

(default = FALSE) whether to initialize the gobject before returning

...

additional params to pass

Value

giotto object

See also

Examples

g <- GiottoData::loadGiottoMini("vizgen")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#>  active environment : 'giotto_env'
#>  python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#>  "/usr/share/miniconda/envs/giotto_env/bin/python"
featinfo <- getFeatureInfo(g, return_giottoPoints = TRUE)

setFeatureInfo(gobject = g, x = featinfo)
#> > " rna " already exists and will be
#>  replaced with new giotto points
#> Setting feature info [rna]
#> An object of class giotto 
#> >Active spat_unit:  z0 
#> >Active feat_type:  rna 
#> dimensions    : 337, 498 (features, cells)
#> [SUBCELLULAR INFO]
#> polygons      : z0 z1 aggregate 
#> features      : rna 
#> [AGGREGATE INFO]
#> expression -----------------------
#>   [z0][rna] raw
#>   [z1][rna] raw
#>   [aggregate][rna] raw normalized scaled pearson
#> spatial locations ----------------
#>   [z0] raw
#>   [z1] raw
#>   [aggregate] raw
#> spatial networks -----------------
#>   [aggregate] Delaunay_network kNN_network
#> spatial enrichments --------------
#>   [aggregate][rna] cluster_metagene
#> dim reduction --------------------
#>   [aggregate][rna] pca umap tsne
#> nearest neighbor networks --------
#>   [aggregate][rna] sNN.pca
#> attached images ------------------
#> images      : 4 items...
#> 
#> 
#> Use objHistory() to see steps and params used