Visualize cells according to 3D PCA dimension reduction
Arguments
- gobject
- giotto object 
- dim_reduction_name
- name of PCA 
- default_save_name
- default save name of PCA plot 
- ...
- Arguments passed on to - dimPlot3D- spat_unit
- spatial unit (e.g. "cell") 
- feat_type
- feature type (e.g. "rna", "dna", "protein") 
- show_plot
- logical. show plot 
- return_plot
- logical. return ggplot object 
- save_plot
- logical. save the plot 
- save_param
- list of saving parameters, see - showSaveParameters
- dim1_to_use
- numeric. dimension to use on x-axis 
- dim2_to_use
- numeric. dimension to use on y-axis 
- dim3_to_use
- numeric. dimension to use on z-axis 
- show_NN_network
- logical. Show underlying NN network 
- nn_network_to_use
- character. type of NN network to use (kNN vs sNN) 
- network_name
- character. name of NN network to use, if show_NN_network = TRUE 
- spat_enr_names
- character. names of spatial enrichment results to include 
- cell_color
- character. what to color cells by (e.g. metadata col or spatial enrichment col) 
- color_as_factor
- logical. convert color column to factor. Discrete colors are used when this is TRUE. continuous colors when FALSE. 
- cell_color_code
- character. discrete colors to use. palette to use or named vector of colors 
- select_cell_groups
- select subset of cells/clusters based on cell_color parameter 
- select_cells
- select subset of cells based on cell IDs 
- show_other_cells
- display not selected cells 
- other_cell_color
- color for not selected cells 
- other_point_size
- point size for not selected cells 
- show_cluster_center
- plot center of selected clusters 
- show_center_label
- plot label of selected clusters 
- center_point_size
- size of center points 
- label_size
- size of labels 
- edge_alpha
- column to use for alpha of the edges 
- point_size
- size of point (cell) 
 
See also
Other reduced dimension visualizations:
dimPlot2D(),
plotPCA(),
plotPCA_2D(),
plotTSNE(),
plotTSNE_2D(),
plotTSNE_3D(),
plotUMAP(),
plotUMAP_2D(),
plotUMAP_3D()
Examples
g <- GiottoData::loadGiottoMini("starmap")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 4. read Giotto image information
#> python already initialized in this session
#>  active environment : '/usr/bin/python3'
#>  python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#>  "/usr/bin/python3"
plotPCA_3D(g)
#> create 3D plot
