Short wrapper for UMAP visualization
Arguments
- gobject
giotto object
- dim_reduction_name
name of UMAP
- default_save_name
default save name of UMAP plot
- ...
Arguments passed on to
dimPlot2D
spat_unit
spatial unit (e.g. "cell")
feat_type
feature type (e.g. "rna", "dna", "protein")
show_plot
logical. show plot
return_plot
logical. return ggplot object
save_plot
logical. save the plot
save_param
list of saving parameters, see
showSaveParameters
dim1_to_use
numeric. dimension to use on x-axis
dim2_to_use
numeric. dimension to use on y-axis
show_NN_network
logical. Show underlying NN network
nn_network_to_use
character. type of NN network to use (kNN vs sNN)
network_name
character. name of NN network to use, if show_NN_network = TRUE
spat_enr_names
character. names of spatial enrichment results to include
cell_color
character. what to color cells by (e.g. metadata col or spatial enrichment col)
color_as_factor
logical. convert color column to factor. Discrete colors are used when this is TRUE. continuous colors when FALSE.
cell_color_code
character. discrete colors to use. palette to use or named vector of colors
cell_color_gradient
character. continuous colors to use. palette to use or vector of colors to use (minimum of 2).
cow_n_col
cowplot param: how many columns
cow_rel_h
cowplot param: relative heights of rows (e.g. c(1,2))
cow_rel_w
cowplot param: relative widths of columns (e.g. c(1,2))
cow_align
cowplot param: how to align
group_by
character. Create multiple plots based on cell annotation column
group_by_subset
character. subset the group_by factor column
gradient_midpoint
numeric. midpoint for color gradient
gradient_style
either 'divergent' (midpoint is used in color scaling) or 'sequential' (scaled based on data range)
gradient_limits
numeric vector with lower and upper limits
select_cell_groups
select subset of cells/clusters based on cell_color parameter
select_cells
select subset of cells based on cell IDs
show_other_cells
display not selected cells
other_cell_color
color for not selected cells
other_point_size
point size for not selected cells
show_cluster_center
plot center of selected clusters
show_center_label
plot label of selected clusters
center_point_size
size of center points
center_point_border_col
border color of center points
center_point_border_stroke
border stroke size of center points
label_size
size of labels
label_fontface
font of labels
edge_alpha
column to use for alpha of the edges
point_shape
point with border or not (border or no_border)
point_size
size of point (cell)
point_alpha
transparency of points
point_border_col
color of border around points
point_border_stroke
stroke size of border around points
title
character. title for plot, defaults to cell_color parameter
show_legend
logical. show legend
legend_text
size of legend text
legend_symbol_size
size of legend symbols
background_color
color of plot background
axis_text
size of axis text
axis_title
size of axis title
See also
Other reduced dimension visualizations:
dimPlot2D()
,
plotPCA()
,
plotPCA_2D()
,
plotPCA_3D()
,
plotTSNE()
,
plotTSNE_2D()
,
plotTSNE_3D()
,
plotUMAP_2D()
,
plotUMAP_3D()
Examples
g <- GiottoData::loadGiottoMini("visium", verbose = FALSE)
#>
#> 1. use installGiottoEnvironment() to install
#> a local miniconda python environment along with required modules
#>
#> 2. provide an existing python path to
#> python_path to use your own python path which has all modules
#> installed
#> Set options("giotto.use_conda" = FALSE) if
#> python functionalities are not needed
plotUMAP(g)