Creates an additional metadata column with information about interacting and non-interacting cell types of the selected cell-cell interaction.
addCellIntMetadata(
gobject,
spat_unit = NULL,
feat_type = NULL,
spatial_network = "spatial_network",
cluster_column,
cell_interaction,
name = "select_int",
return_gobject = TRUE
)
Giotto object
This function will create an additional metadata column which selects interacting cell types for a specific cell-cell interaction. For example, if you want to color interacting astrocytes and oligodendrocytes it will create a new metadata column with the values "select_astrocytes", "select_oligodendrocytes", "other_astrocytes", "other_oligodendroyctes" and "other". Where "other" is all other cell types found within the selected cell type column.
g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#> "/usr/bin/python3"
#> Warning: Some of Giotto's expected python module(s) were not found:
#> pandas, igraph, leidenalg, community, networkx, sklearn
#> (This is fine if python-based functions are not needed)
#>
#> ** Python path used: "/usr/bin/python3"
addCellIntMetadata(g, cluster_column = "leiden_clus",
cell_interaction = "custom_leiden")
#> An object of class giotto
#> >Active spat_unit: cell
#> >Active feat_type: rna
#> [SUBCELLULAR INFO]
#> polygons : cell
#> [AGGREGATE INFO]
#> expression -----------------------
#> [cell][rna] raw normalized scaled
#> spatial locations ----------------
#> [cell] raw
#> spatial networks -----------------
#> [cell] Delaunay_network spatial_network
#> spatial enrichments --------------
#> [cell][rna] cluster_metagene DWLS
#> dim reduction --------------------
#> [cell][rna] pca custom_pca umap custom_umap tsne
#> nearest neighbor networks --------
#> [cell][rna] sNN.pca custom_NN
#> attached images ------------------
#> images : alignment image
#>
#>
#> Use objHistory() to see steps and params used