ONTraC (Ordered Niche Trajectory Construction) is a niche-centered, machine learning method for constructing spatially continuous trajectories. ONTraC differs from existing tools in that it treats a niche, rather than an individual cell, as the basic unit for spatial trajectory analysis. In this context, we define niche as a multicellular, spatially localized region where different cell types may coexist and interact with each other. ONTraC seamlessly integrates cell-type composition and spatial information by using the graph neural network modeling framework. Its output, which is called the niche trajectory, can be viewed as a one dimensional representation of the tissue microenvironment continuum. By disentangling cell-level and niche-level properties, niche trajectory analysis provides a coherent framework to study coordinated responses from all the cells in association with continuous tissue microenvironment variations.
In this tutorial, we ues a MERFISH mouse motor cortex dataset comprising 61 tissue sections and containing approximately 280,000 cells characterised by a 258-gene panel. The study identified 3 classes of cells, glutamatergic, GABAergic and non-neuronal cell groups, and further clustered into 23 annotated plus 1 other subclass-level cell types.
MERFISH is a massively multiplexed single-molecule imaging technology for spatially resolved transcriptomics capable of simultaneously measuring the copy number and spatial distribution of hundreds to tens of thousands of RNA species in individual cells. For further information, please visit the official website.
python_path <- "giotto_ontrac_env"
env_name <- "giotto_ontrac_env"
We need R>=4.4
for this tutorial.
Please following the Giotto Installation Tutorial.
Since ONTraC is a GNN algorithm that relies on pytorch-geometric,
we create a new environment here in order not to interfere with other
software using installGiottoONTraCEnvironment()
.
library(Giotto)
installGiottoONTraCEnvironment(envname = env_name)
You can also update/re-install ONTraC in a specific env.
reticulate::conda_install(envname = env_name,
packages = 'ontrac',
pip = TRUE)
options(timeout=Inf) # In case of network interrupt
data_path <- "/path/to/data"
dir.create(data_path, recursive=T)
results_folder <- "/path/to/results"
dir.create(results_folder, recursive=T)
The MERFISH mouse motor cortex data to run this tutorial can be found here
You need to download the processed expression, metadata, and cell segmentation information by running these commands:
Note 1: there are 61 slices here, we run on two of them to save the time. Note 2: due to the instability of network, download processing may be interrupt.
We recommend to download these data in advance or download the processing giotto object from Zenodo.
download.file(url = "https://download.brainimagelibrary.org/cf/1c/cf1c1a431ef8d021/processed_data/counts.h5ad",
destfile = file.path(data_path,"counts.h5ad"))
download.file(url = "https://download.brainimagelibrary.org/cf/1c/cf1c1a431ef8d021/processed_data/cell_labels.csv",
destfile = file.path(data_path,"cell_labels.csv"))
download.file(url = "https://download.brainimagelibrary.org/cf/1c/cf1c1a431ef8d021/processed_data/segmented_cells_mouse2sample1.csv",
destfile = file.path(data_path,"segmented_cells_mouse2sample1.csv"))
download.file(url = "https://download.brainimagelibrary.org/cf/1c/cf1c1a431ef8d021/processed_data/segmented_cells_mouse2sample6.csv",
destfile = file.path(data_path,"segmented_cells_mouse2sample6.csv"))
There are two options for creating the giotto object. Option 1 is create the giotto object step by step. Option 2 is load the pre-constructed giotto object from Zenodo.
library(Giotto)
set_giotto_python_path(python_path = python_path)
## Install the anndata and scanpy package since the counts matrix was stored in h5ad format. We need it to convert an anndata object to giotto object.
reticulate::conda_install(envname = env_name, packages = c('scanpy'), pip = TRUE)
## Create Giotto object from expression counts. This file contains 61 slices here.
giotto_all_slices_obj <- anndataToGiotto(file.path(data_path, "counts.h5ad"), python_path = python_path)
## Load meta_data
meta_df <- read.csv(file.path(data_path, "cell_labels.csv"),
colClasses = "character") # as the cell IDs are 30 digit numbers, set the type as character to avoid the limitation of R in handling larger integers
colnames(meta_df)[[1]] <- "cell_ID"
### We use two slices here to speed up
slice1_cells <- meta_df[meta_df$slice_id == "mouse2_slice229",]$cell_ID
slice2_cells <- meta_df[meta_df$slice_id == "mouse2_slice300",]$cell_ID
selected_cells <- c(slice1_cells, slice2_cells)
## Subset giotto obj by cell ID
giotto_slice1_obj <- subsetGiotto(gobject = giotto_all_slices_obj,
cell_ids = slice1_cells)
giotto_slice2_obj <- subsetGiotto(gobject = giotto_all_slices_obj,
cell_ids = slice2_cells)
## Add cell metadata
giotto_slice1_obj <- addCellMetadata(gobject = giotto_slice1_obj,
new_metadata = meta_df,
by_column = TRUE,
column_cell_ID = 'cell_ID')
giotto_slice2_obj <- addCellMetadata(gobject = giotto_slice2_obj,
new_metadata = meta_df,
by_column = TRUE,
column_cell_ID = 'cell_ID')
## Cell segmentation. Calculate center (median of vertices) of each cell.
segments_1_df <- read.csv(file.path(data_path, "segmented_cells_mouse2sample1.csv"),
row.names=1, colClasses = "character") # as the cell IDs are 30 digit numbers, set the type as character to avoid the limitation of R in handling larger integers
segments_2_df <- read.csv(file.path(data_path, "segmented_cells_mouse2sample6.csv"),
row.names=1, colClasses = "character") # as the cell IDs are 30 digit numbers, set the type as character to avoid the limitation of R in handling larger integers
segments_df <- rbind(segments_1_df, segments_2_df)
loc.use <- segments_df[selected_cells,]
loc.x <- grep("boundaryX_",colnames(loc.use),value = T)
loc.y <- grep("boundaryY_",colnames(loc.use),value = T)
centr.x <- apply(loc.use[,loc.x],1,function(x){
temp <- lapply(x,function(y){
as.numeric(unlist(strsplit(y,", ")))
})
return (median(unname(unlist(temp))))
})
centr.y <- apply(loc.use[,loc.y],1,function(x){
temp <- lapply(x,function(y){
as.numeric(unlist(strsplit(y,", ")))
})
return (median(unname(unlist(temp))))
})
## create spatial locations object
spatial_locs_df <- data.frame(cell_ID = selected_cells,
sdimx = centr.x,
sdimy = centr.y)
spatial_locs_slice1_df <- spatial_locs_df[slice1_cells,]
spatial_locs_slice2_df <- spatial_locs_df[slice2_cells,]
spat_locs_slice1_obj <- readSpatLocsData(data_list = spatial_locs_slice1_df)
spat_locs_slice2_obj <- readSpatLocsData(data_list = spatial_locs_slice2_df)
## add spatial location info
giotto_slice1_obj <- setSpatialLocations(gobject = giotto_slice1_obj,
x = spat_locs_slice1_obj)
giotto_slice2_obj <- setSpatialLocations(gobject = giotto_slice2_obj,
x = spat_locs_slice2_obj)
## merge two giotto objects together
giotto_obj <- joinGiottoObjects(gobject_list = list(giotto_slice1_obj,
giotto_slice2_obj),
gobject_names = c("mouse2_slice229",
"mouse2_slice300"), # name for each samples
join_method = "z_stack")
## save giotto obj
# saveGiotto
saveGiotto(gobject = giotto_obj, foldername = "gobject", dir=results_folder)
If you facing network issue when downloading the raw dataset. Please
download the processing giotto obj from Zenodo, unzip and move it
to results
folder.
library(Giotto)
set_giotto_python_path(python_path = python_path)
giotto_obj <- loadGiotto(path_to_folder = file.path(results_folder, "gobject"), python_path = python_path)
spatPlot2D(giotto_obj,
group_by = "slice_id",
cell_color = "subclass",
point_size = 1,
point_border_stroke = NA,
legend_text = 6)
# We skip the processing process here to save time and use the given cell type
# annotation directly
ONTraC_input <- getONTraCv1Input(gobject = giotto_obj,
cell_type = "subclass",
output_path = results_folder,
spat_unit = "cell",
feat_type = "rna",
verbose = TRUE)
head(ONTraC_input)
# Cell_ID Sample x y Cell_Type
# <chr> <chr> <dbl> <dbl> <chr>
# mouse2_slice229-100101435705986292663283283043431511315 mouse2_slice229 -4828.728 -2203.4502 L6 CT
# mouse2_slice229-100104370212612969023746137269354247741 mouse2_slice229 -5405.400 -995.6467 OPC
# mouse2_slice229-100128078183217482733448056590230529739 mouse2_slice229 -5731.403 -1071.1735 L2/3 IT
# mouse2_slice229-100209662400867003194056898065587980841 mouse2_slice229 -5468.113 -1286.2465 Oligo
# mouse2_slice229-100218038012295593766653119076639444055 mouse2_slice229 -6399.986 -959.7440 L2/3 IT
# mouse2_slice229-100252992997994275968450436343196667192 mouse2_slice229 -6637.847 -1659.6237 Astro
runONTraCV1(ONTraC_input = ONTraC_input,
dataset = file.path(results_folder, "ONTraC_dataset_input.csv"),
preprocessing_dir = file.path(results_folder, "preprocessing_dir"),
GNN_dir = file.path(results_folder, "GNN_dir"),
NTScore_dir = file.path(results_folder, "NTScore_dir"),
n_neighbors = 50L,
n_local = 20L,
device = "cpu",
seed = 42L,
k = 6L,
modularity_loss_weight = 0.3,
purity_loss_weight = 300.0,
regularization_loss_weight = 0.3,
beta = 0.03,
python_path = python_path)
You can run ONTraC on an HPC with an NVIDIA GPU node, which would save a lot of time when applying it on larger datasets.
source ~/.bash_profile
conda create -y -n ONTraC python=3.11
conda activate ONTraC
pip install ONTraC
source ~/.bash_profile
conda activate ONTraC
ONTraC -d /path/to/results/ONTraC_dataset_input.csv --preprocessing-dir /path/to/results/preprocessing_dir --GNN-dir /path/to/results/GNN_dir --NTScore-dir /path/to/results/NTScore_dir --device cuda --epochs 1000 -s 42 --patience 100 --min-delta 0.001 --min-epochs 50 --lr 0.03 --hidden-feats 4 -k 6 --modularity-loss-weight 0.3 --purity-loss-weight 300 --regularization-loss-weight 0.3 --beta 0.03 2>&1 | tee /path/to/results/merfish_subset.log
Copy the output directories
(/path/to/results/preprocessing_dir
,
/path/to/results/GNN_dir
, and
/path/to/results/NTScore_dir
) back to the machine running
Giotto.
For details, please refer ONTraC’s website.
giotto_obj <- loadOntraCResults(gobject = giotto_obj,
ontrac_results_dir = results_folder,
NTScore_reverse = TRUE # whether to reverse the NTScore (direction of the trajectory)
)
This function will look for the preprocessing_dir
,
GNN_dir
, and NTScore_dir
under the
results_folder
automatically.
The NTScore and binarized niche cluster info were stored in cell metadata as below:
# cell_ID sample_id slice_id class_label subclass label list_ID NTScore niche cluster
# <char> <char> <char> <char> <char> <char> <char> <dbl> <fctr>
# 1: mouse2_slice229-100101435705986292663283283043431511315 mouse2_sample6 mouse2_slice229 Glutamatergic L6 CT L6_CT_5 mouse2_slice229 0.2002081 NicheCluster_3
# 2: mouse2_slice229-100104370212612969023746137269354247741 mouse2_sample6 mouse2_slice229 Other OPC OPC mouse2_slice229 0.7999791 NicheCluster_1
# 3: mouse2_slice229-100128078183217482733448056590230529739 mouse2_sample6 mouse2_slice229 Glutamatergic L2/3 IT L23_IT_4 mouse2_slice229 0.7662198 NicheCluster_1
# 4: mouse2_slice229-100209662400867003194056898065587980841 mouse2_sample6 mouse2_slice229 Other Oligo Oligo_1 mouse2_slice229 0.6010420 NicheCluster_5
# 5: mouse2_slice229-100218038012295593766653119076639444055 mouse2_sample6 mouse2_slice229 Glutamatergic L2/3 IT L23_IT_4 mouse2_slice229 0.7132024 NicheCluster_1
# 6: mouse2_slice229-100252992997994275968450436343196667192 mouse2_sample6 mouse2_slice229 Other Astro Astro_2 mouse2_slice229 0.1980136 NicheCluster_3
The 1) probability matrix of each cell assigned to each niche cluster and 2) connectivity between niche cluster were stored as additional matrix here:
GiottoClass::list_expression(giotto_obj)
# spat_unit feat_type name
# <char> <char> <char>
# 1: cell rna raw
# 2: cell niche cluster prob
# 3: niche cluster connectivity normalized
plotSpatNicheClusterProb(gobject = giotto_obj,
group_by = "list_ID",
gradient_limits = c(0, 1),
point_border_col = "gray",
show_plot = T)
plotSpatNicheClusterBin(gobject = giotto_obj,
group_by = "list_ID",
point_size = 1,
point_border_stroke = NA,
show_plot = TRUE)
set.seed(42) # fix the node positions
plotNicheClusterConnectivity(gobject = giotto_obj,
show_plot = TRUE)
spatPlot2D(gobject = giotto_obj,
spat_unit = "cell",
feat_type = "rna",
group_by = "list_ID",
cell_color = "NTScore",
color_as_factor = FALSE,
cell_color_gradient = "turbo",
point_size = 1,
point_border_stroke = NA,
show_plot = TRUE
)
plotCellTypeNTScore(gobject = giotto_obj,
cell_type = "subclass",
values = "NTScore",
spat_unit = "cell",
feat_type = "rna",
show_plot = TRUE)
plotCTCompositionInNicheCluster(gobject = giotto_obj,
cell_type = "subclass",
normalization = "by_niche_cluster",
show_plot = TRUE
)
We can also normalized by cell type.
plotCTCompositionInNicheCluster(gobject = giotto_obj,
cell_type = "subclass",
normalization = "by_cell_type",
show_plot = TRUE
)
# R version 4.4.0 (2024-04-24)
# Platform: aarch64-apple-darwin20
# Running under: macOS Ventura 13.6.6
#
# Matrix products: default
# BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
# LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
#
# locale:
# [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#
# time zone: America/New_York
# tzcode source: internal
#
# attached base packages:
# [1] stats graphics grDevices utils datasets methods base
#
# other attached packages:
# [1] ggraph_2.2.1.9000 ggplot2_3.5.1 Giotto_4.1.3 GiottoClass_0.4.0
#
# loaded via a namespace (and not attached):
# [1] gtable_0.3.5 xfun_0.44 htmlwidgets_1.6.4 ggrepel_0.9.5
# [5] lattice_0.22-6 vctrs_0.6.5 tools_4.4.0 generics_0.1.3
# [9] parallel_4.4.0 tibble_3.2.1 fansi_1.0.6 colorRamp2_0.1.0
# [13] pkgconfig_2.0.3 R.oo_1.26.0 Matrix_1.7-0 data.table_1.15.4
# [17] checkmate_2.3.2 RColorBrewer_1.1-3 lifecycle_1.0.4 compiler_4.4.0
# [21] farver_2.1.2 deldir_2.0-4 GiottoUtils_0.1.12 munsell_0.5.1
# [25] ggforce_0.4.2 terra_1.7-78 graphlayouts_1.1.1 codetools_0.2-20
# [29] scattermore_1.2 htmltools_0.5.8.1 yaml_2.3.8 lazyeval_0.2.2
# [33] plotly_4.10.4 pillar_1.9.0 tidyr_1.3.1 MASS_7.3-60.2
# [37] R.utils_2.12.3 cachem_1.1.0 dbscan_1.2-0 viridis_0.6.5
# [41] magick_2.8.4 gtools_3.9.5 tidyselect_1.2.1 digest_0.6.35
# [45] dplyr_1.1.4 purrr_1.0.2 labeling_0.4.3 polyclip_1.10-6
# [49] cowplot_1.1.3 fastmap_1.2.0 grid_4.4.0 colorspace_2.1-0
# [53] cli_3.6.3 magrittr_2.0.3 tidygraph_1.3.1 utf8_1.2.4
# [57] withr_3.0.1 scales_1.3.0 backports_1.5.0 sp_2.1-4
# [61] rmarkdown_2.27 httr_1.4.7 matrixStats_1.3.0 igraph_2.0.3
# [65] gridExtra_2.3 reticulate_1.38.0 GiottoVisuals_0.2.5 png_0.1-8
# [69] R.methodsS3_1.8.2 memoise_2.0.1 evaluate_0.24.0 knitr_1.47
# [73] viridisLite_0.4.2 rlang_1.1.4 Rcpp_1.0.13 glue_1.7.0
# [77] tweenr_2.0.3 rstudioapi_0.16.0 jsonlite_1.8.8 R6_2.5.1