Codeluppi et al. created a cyclic single-molecule fluorescence in situ hybridization (osmFISH) technology and define the cellular organization of the somatosensory cortex with the expression of 33 genes in 5,328 cells.
# Ensure Giotto Suite and GiottoData, a small, helper module for tutorials, are installed.
pkgs <- c("Giotto", "GiottoData")
need_install <- pkgs[sapply(pkgs, function(pkg) !requireNamespace(pkg, quietly = TRUE))]
if (length(need_install) > 0L) {
if (!requireNamespace("pak", quietly = TRUE)) install.packages("pak")
pak::pak(sprintf("drieslab/%s", need_install))
}
# Ensure the Python environment for Giotto has been installed.
genv_exists <- Giotto::checkGiottoEnvironment()
if(!genv_exists){
# The following command need only be run once to install the Giotto environment.
Giotto::installGiottoEnvironment()
}
library(Giotto)
library(GiottoData)
# 1. set working directory
results_folder <- "/path/to/results/"
# Optional: Specify a path to a Python executable within a conda or miniconda
# environment. If set to NULL (default), the Python executable within the previously
# installed Giotto environment will be used.
python_path <- NULL # alternatively, "/local/python/path/python" if desired.
The osmFISH data to run this tutorial can be found here. Alternatively you can use the getSpatialDataset to automatically download this dataset like we do in this example; to download the data used to create the Giotto Object below, please ensure that wget is installed locally.
# download data to working directory ####
# if wget is installed, set method = "wget"
# if you run into authentication issues with wget, then add " extra = "--no-check-certificate" "
getSpatialDataset(dataset = "osmfish_SS_cortex",
directory = results_folder,
method = "wget")
## instructions allow us to automatically save all plots into a chosen results folder
instructions <- createGiottoInstructions(save_plot = TRUE,
show_plot = FALSE,
return_plot = FALSE,
save_dir = results_folder,
python_path = python_path)
expr_path <- file.path(results_folder, "osmFISH_prep_expression.txt")
loc_path <- file.path(results_folder, "osmFISH_prep_cell_coordinates.txt")
meta_path <- file.path(results_folder, "osmFISH_prep_cell_metadata.txt")
## create
osm_test <- createGiottoObject(expression = expr_path,
spatial_locs = loc_path,
instructions = instructions)
## add field annotation
metadata <- data.table::fread(file = meta_path)
osm_test <- addCellMetadata(osm_test,
new_metadata = metadata,
by_column = TRUE,
column_cell_ID = "CellID")
## filter
osm_test <- filterGiotto(gobject = osm_test,
expression_threshold = 1,
feat_det_in_min_cells = 10,
min_det_feats_per_cell = 10,
expression_values = "raw",
verbose = TRUE)
## normalize Giotto
## there are two ways for osmFISH object
# 1. standard z-score way
osm_test <- normalizeGiotto(gobject = osm_test)
# 2. osmFISH way
raw_expr_matrix <- getExpression(osm_test,
values = "raw",
output = "matrix")
norm_genes <- (raw_expr_matrix/Matrix::rowSums(raw_expr_matrix)) * nrow(raw_expr_matrix)
norm_genes_cells <- Matrix::t((Matrix::t(norm_genes)/Matrix::colSums(norm_genes)) * ncol(raw_expr_matrix))
norm_genes_cells <- Giotto::createExprObj(norm_genes_cells,
name = "custom")
osm_test <- setGiotto(osm_test,
x = norm_genes_cells)
## add a python path
x <- createGiottoInstructions()
osm_test <- changeGiottoInstructions(osm_test,
params = "python_path",
new_values = x$python_path)
## add gene & cell statistics
osm_test <- addStatistics(gobject = osm_test)
# save according to giotto instructions
spatPlot2D(gobject = osm_test,
cell_color = "ClusterName",
point_size = 1.3,
save_param = list(save_name = "2_a_original_clusters"))
spatPlot2D(gobject = osm_test,
cell_color = "Region",
cell_color_code = c(
"Excluded" = "lightsteelblue4",
"Hippocampus" = "gold",
"White matter" = "cyan",
"Internal Capsule Caudoputamen" = "#9730F2",
"Ventricle" = "green",
"Layer 2-3 lateral" = "blue",
"Layer 2-3 medial" = "yellowgreen",
"Layer 3-4" = "brown",
"Layer 4" = "orange",
"Layer 5" = "red",
"Layer 6" = "magenta",
"Pia Layer 1" = "mediumturquoise"
),
point_size = 1.5,
save_param = list(save_name = "2_b_original_regions"))
spatPlot2D(gobject = osm_test,
cell_color = "ClusterID",
point_size = 1.5,
save_param = list(save_name = "2_c_clusterID"))
spatPlot2D(gobject = osm_test,
cell_color = "total_expr",
color_as_factor = FALSE,
point_size = 1.5,
gradient_style = "sequential",
gradient_midpoint = 160,
gradient_limits = c(120, 220),
background_color = "black",
save_param = list(save_name = "2_d_total_expr_limits"))
## highly variable genes (HVG)
# only 33 genes so use all genes
## run PCA on expression values (default)
osm_test <- runPCA(gobject = osm_test,
expression_values = "custom",
scale_unit = FALSE,
center = FALSE)
screePlot(osm_test,
ncp = 30,
save_param = list(save_name = "3_a_screeplot"))
## run UMAP and tSNE on PCA space (default)
osm_test <- runUMAP(osm_test,
dimensions_to_use = 1:31,
n_threads = 4)
plotUMAP(gobject = osm_test,
save_param = list(save_name = "3_c_UMAP_reduction"))
## hierarchical clustering
osm_test <- doHclust(gobject = osm_test,
expression_values = "custom",
k = 36)
plotUMAP(gobject = osm_test,
cell_color = "hclust",
point_size = 2.5,
show_NN_network = FALSE,
edge_alpha = 0.05,
save_param = list(save_name = "4_a_UMAP_hclust"))
## kmeans clustering
osm_test <- doKmeans(gobject = osm_test,
expression_values = "normalized",
dim_reduction_to_use = "pca",
dimensions_to_use = 1:20,
centers = 36,
nstart = 2000)
plotUMAP(gobject = osm_test,
cell_color = "kmeans",
point_size = 2.5,
show_NN_network = FALSE,
edge_alpha = 0.05,
save_param = list(save_name = "4_b_UMAP_kmeans"))
## Leiden clustering strategy:
# 1. overcluster
# 2. merge small clusters that are highly similar
# sNN network (default)
osm_test <- createNearestNetwork(gobject = osm_test,
dimensions_to_use = 1:31,
k = 12)
osm_test <- doLeidenCluster(gobject = osm_test,
resolution = 0.09,
n_iterations = 1000)
plotUMAP(gobject = osm_test,
cell_color = "leiden_clus",
point_size = 2.5,
show_NN_network = FALSE,
edge_alpha = 0.05,
save_param = list(save_name = "4_c_UMAP_leiden"))
# merge small groups based on similarity
leiden_similarities <- getClusterSimilarity(osm_test,
expression_values = "custom",
cluster_column = "leiden_clus")
osm_test <- mergeClusters(osm_test,
expression_values = "custom",
cluster_column = "leiden_clus",
new_cluster_name = "leiden_clus_m",
max_group_size = 30,
force_min_group_size = 25,
max_sim_clusters = 10,
min_cor_score = 0.7)
plotUMAP(gobject = osm_test,
cell_color = "leiden_clus_m",
point_size = 2.5,
show_NN_network = FALSE,
edge_alpha = 0.05,
save_param = list(save_name = "4_d_UMAP_leiden_merged"))
## show cluster relationships
showClusterHeatmap(gobject = osm_test,
expression_values = "custom",
cluster_column = "leiden_clus_m",
save_param = list(save_name = "4_e_heatmap", units = "cm"),
row_names_gp = grid::gpar(fontsize = 6),
column_names_gp = grid::gpar(fontsize = 6))
showClusterDendrogram(osm_test,
cluster_column = "leiden_clus_m",
h = 1,
rotate = TRUE,
save_param = list(save_name = "4_f_dendro", units = "cm"))
# expression and spatial
spatDimPlot2D(gobject = osm_test,
cell_color = "leiden_clus",
spat_point_size = 2,
plot_alignment = "horizontal",
save_param = list(save_name = "5_a_covis_leiden"))
spatDimPlot2D(gobject = osm_test,
cell_color = "leiden_clus_m",
spat_point_size = 2,
plot_alignment = "horizontal",
save_param = list(save_name = "5_b_covis_leiden_m"))
spatDimPlot2D(gobject = osm_test,
cell_color = "leiden_clus_m",
dim_point_size = 2,
spat_point_size = 2,
select_cell_groups = "29",
plot_alignment = "horizontal",
save_param = list(save_name = "5_c_covis_leiden_merged_selected"))
spatDimPlot2D(gobject = osm_test,
cell_color = "total_expr",
color_as_factor = FALSE,
dim_point_shape = "no_border",
spat_point_shape = "no_border",
dim_point_size = 0.4,
spat_point_size = 0.4,
dim_background_color = "black",
spat_background_color = "black",
gradient_style = "sequential",
gradient_midpoint = 160,
gradient_limits = c(120,220),
plot_alignment = "horizontal",
save_param = list(save_name = "5_d_total_expr"))
## split dendrogram nodes ##
dendsplits <- getDendrogramSplits(gobject = osm_test,
expression_values = "custom",
cluster_column = "leiden_clus_m")
split_3_markers <- findMarkers(gobject = osm_test,
method = "gini",
expression_values = "custom",
cluster_column = "leiden_clus_m",
group_1 = unlist(dendsplits[3]$tree_1),
group_2 = unlist(dendsplits[3]$tree_2))
## Individual populations ##
markers_scran <- findMarkers_one_vs_all(gobject = osm_test,
method = "scran",
expression_values = "custom",
cluster_column = "leiden_clus_m",
min_feats = 2,
rank_score = 2)
## violinplot
topgenes_scran <- markers_scran[, head(.SD, 1), by = "cluster"]$feats
violinPlot(osm_test,
feats = unique(topgenes_scran),
cluster_column = "leiden_clus_m",
expression_values = "custom",
strip_text = 5,
strip_position = "right",
save_param = list(save_name = "6_a_violinplot"))
plotMetaDataHeatmap(osm_test,
expression_values = "custom",
metadata_cols = "leiden_clus_m",
save_param = list(save_name = "6_b_metaheatmap"))
plotMetaDataHeatmap(osm_test,
expression_values = "custom",
metadata_cols = "leiden_clus_m",
save_param = list(save_name = "6_e_metaheatmap_all_genes"))
plotMetaDataHeatmap(osm_test,
expression_values = "custom",
metadata_cols = "ClusterName",
save_param = list(save_name = "6_f_metaheatmap_all_genes_names"))
Use annotateGiotto() to annotate the clusters. For this dataset, we have ClusterName in the metadata.
osm_test <- createSpatialGrid(gobject = osm_test,
sdimx_stepsize = 2000,
sdimy_stepsize = 2000,
minimum_padding = 0)
spatPlot2D(osm_test,
cell_color = "ClusterName",
show_grid = TRUE,
grid_color = "lightblue",
spatial_grid_name = "spatial_grid",
point_size = 1.5,
save_param = list(save_name = "8_grid_det_cell_types"))
osm_test <- createSpatialNetwork(gobject = osm_test)
spatPlot2D(gobject = osm_test,
show_network = TRUE,
network_color = "blue",
point_size = 1.5,
cell_color = "ClusterName",
legend_symbol_size = 2,
save_param = list(save_name = "9_spatial_network_k10"))
# km binarization
km_spatialfeats <- binSpect(osm_test,
calc_hub = TRUE,
hub_min_int = 5,
bin_method = "kmeans")
spatDimFeatPlot2D(osm_test,
expression_values = "scaled",
feats = km_spatialgenes$feats[1:3],
plot_alignment = "horizontal",
spat_point_shape = "no_border",
dim_point_shape = "no_border",
spat_point_size = 0.1,
dim_point_size = 0.1,
cow_n_col = 1,
save_param = list(save_name = "10_a_spatial_genes_km"))
## calculate frequently seen proximities
cell_proximities <- cellProximityEnrichment(gobject = osm_test,
cluster_column = "ClusterName",
number_of_simulations = 1000)
## barplot
cellProximityBarplot(gobject = osm_test,
CPscore = cell_proximities,
min_orig_ints = 25,
min_sim_ints = 25,
save_param = list(save_name = "12_a_barplot_cell_cell_enrichment"))
## heatmap
cellProximityHeatmap(gobject = osm_test,
CPscore = cell_proximities,
order_cell_types = TRUE,
scale = TRUE,
color_breaks = c(-1.5, 0, 1.5),
color_names = c("blue", "white", "red"),
save_param = list(save_name = "12_b_heatmap_cell_cell_enrichment",
unit = "in"))
## network
cellProximityNetwork(gobject = osm_test,
CPscore = cell_proximities,
remove_self_edges = FALSE,
only_show_enrichment_edges = TRUE,
save_param = list(save_name = "12_c_network_cell_cell_enrichment"))
## visualization
spec_interaction <- "Astrocyte_Mfge8--Oligodendrocyte_Precursor_cells"
cellProximitySpatPlot(gobject = osm_test,
interaction_name = spec_interaction,
cluster_column = "ClusterName",
cell_color = "ClusterName",
cell_color_code = c("Astrocyte_Mfge8" = "blue",
"Oligodendrocyte_Precursor_cells" = "red"),
coord_fix_ratio = 0.5,
point_size_select = 3,
point_size_other = 1.5,
save_param = list(save_name = "12_d_cell_cell_enrichment_selected"))
R version 4.3.2 (2023-10-31)
Platform: x86_64-apple-darwin20 (64-bit)
Running under: macOS Sonoma 14.3.1
Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: America/New_York
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] GiottoData_0.2.7.0 GiottoUtils_0.1.5 Giotto_4.0.2 GiottoClass_0.1.3
loaded via a namespace (and not attached):
[1] RColorBrewer_1.1-3 ggdendro_0.1.23 rstudioapi_0.15.0
[4] jsonlite_1.8.8 shape_1.4.6 magrittr_2.0.3
[7] magick_2.8.2 farver_2.1.1 rmarkdown_2.25
[10] GlobalOptions_0.1.2 zlibbioc_1.48.0 ragg_1.2.7
[13] vctrs_0.6.5 Cairo_1.6-2 DelayedMatrixStats_1.24.0
[16] RCurl_1.98-1.14 terra_1.7-71 htmltools_0.5.7
[19] S4Arrays_1.2.0 BiocNeighbors_1.20.2 SparseArray_1.2.4
[22] plyr_1.8.9 igraph_2.0.1.1 lifecycle_1.0.4
[25] iterators_1.0.14 pkgconfig_2.0.3 rsvd_1.0.5
[28] Matrix_1.6-5 R6_2.5.1 fastmap_1.1.1
[31] GenomeInfoDbData_1.2.11 MatrixGenerics_1.14.0 clue_0.3-65
[34] digest_0.6.34 colorspace_2.1-0 S4Vectors_0.40.2
[37] dqrng_0.3.2 irlba_2.3.5.1 textshaping_0.3.7
[40] GenomicRanges_1.54.1 beachmat_2.18.0 labeling_0.4.3
[43] progressr_0.14.0 fansi_1.0.6 polyclip_1.10-6
[46] abind_1.4-5 compiler_4.3.2 withr_3.0.0
[49] doParallel_1.0.17 backports_1.4.1 BiocParallel_1.36.0
[52] viridis_0.6.5 dendextend_1.17.1 ggforce_0.4.1
[55] MASS_7.3-60.0.1 DelayedArray_0.28.0 rjson_0.2.21
[58] bluster_1.12.0 gtools_3.9.5 GiottoVisuals_0.1.4
[61] tools_4.3.2 glue_1.7.0 dbscan_1.1-12
[64] grid_4.3.2 checkmate_2.3.1 Rtsne_0.17
[67] cluster_2.1.6 reshape2_1.4.4 generics_0.1.3
[70] gtable_0.3.4 tidyr_1.3.1 data.table_1.15.0
[73] BiocSingular_1.18.0 tidygraph_1.3.1 ScaledMatrix_1.10.0
[76] metapod_1.10.1 utf8_1.2.4 XVector_0.42.0
[79] BiocGenerics_0.48.1 RcppAnnoy_0.0.22 ggrepel_0.9.5
[82] foreach_1.5.2 pillar_1.9.0 stringr_1.5.1
[85] limma_3.58.1 circlize_0.4.15 tweenr_2.0.2
[88] dplyr_1.1.4 lattice_0.22-5 deldir_2.0-2
[91] tidyselect_1.2.0 ComplexHeatmap_2.18.0 SingleCellExperiment_1.24.0
[94] locfit_1.5-9.8 scuttle_1.12.0 knitr_1.45
[97] gridExtra_2.3 IRanges_2.36.0 edgeR_4.0.15
[100] SummarizedExperiment_1.32.0 stats4_4.3.2 xfun_0.42
[103] graphlayouts_1.1.0 Biobase_2.62.0 statmod_1.5.0
[106] matrixStats_1.2.0 stringi_1.8.3 yaml_2.3.8
[109] evaluate_0.23 codetools_0.2-19 ggraph_2.1.0
[112] tibble_3.2.1 colorRamp2_0.1.0 cli_3.6.2
[115] uwot_0.1.16 reticulate_1.35.0 systemfonts_1.0.5
[118] munsell_0.5.0 Rcpp_1.0.12 GenomeInfoDb_1.38.6
[121] png_0.1-8 parallel_4.3.2 ggplot2_3.4.4
[124] scran_1.30.2 sparseMatrixStats_1.14.0 bitops_1.0-7
[127] SpatialExperiment_1.12.0 viridisLite_0.4.2 scales_1.3.0
[130] purrr_1.0.2 crayon_1.5.2 GetoptLong_1.0.5
[133] rlang_1.1.3 cowplot_1.1.3