vignettes/VisiumHD_Human_Colorectal_Cancer.Rmd
VisiumHD_Human_Colorectal_Cancer.Rmd
Ensure that the Giotto Suite is correctly installed and configured.
# Verify that the Giotto Suite is installed.
if(!"Giotto" %in% installed.packages()) {
pak::pkg_install("drieslab/Giotto")
}
# check if the Python environment for Giotto has been installed.
genv_exists <- Giotto::checkGiottoEnvironment()
if(!genv_exists){
# The following command need only be run once to install the Giotto environment.
Giotto::installGiottoEnvironment()
}
Set up the working directory and optionally specify a custom Python executable path if not using the default Giotto environment.
library(Giotto)
# 1. set working directory
results_folder <- "/path/to/results/"
python_path <- NULL # alternatively, "/local/python/path/python" if desired.
Create instructions for Giotto analysis, specifying the saving directory, whether to save plots, and the Python executable path if needed.
## create instructions
instructions <- createGiottoInstructions(save_dir = results_folder,
save_plot = TRUE,
show_plot = FALSE,
return_plot = FALSE,
python_path = python_path)
## provide path to visium folder
data_path <- "/path/to/data/"
To create a Giotto object, you can either use visiumHD reader
function importVisiumHD()
or use
createGiottoVisiumHDObject()
. Here, we use the reader
function to create a Giotto visium HD object.
readerHD <- importVisiumHD()
readerHD$data_path <- data_path
## directly from visium folder
visiumHD <- readerHD$create_gobject(
data_path = data_path,
png_name = "tissue_lowres_image.png",
gene_column_index = 2)
## check metadata
pDataDT(visiumHD,
spat_unit = "hex40")
# check available image names
showGiottoImageNames(visiumHD) # "image" is the default name
Perform data processing including filtering, normalization, and adding optional statistics.
visiumHD <- filterGiotto(gobject = visiumHD,
expression_threshold = 1,
feat_det_in_min_cells = 40,
min_det_feats_per_cell = 50,
expression_values = "raw",
feat_type = "rna",
verbose = TRUE)
visiumHD <- normalizeGiotto(gobject = visiumHD,
scalefactor = 6000,
feat_type = "rna",
verbose = TRUE)
visiumHD <- addStatistics(gobject = visiumHD,
feat_type = "rna")
Calculate highly variable features and perform PCA, displaying the results with a screeplot.
visiumHD <- calculateHVF(gobject = visiumHD,
spat_unit = "hexagon400",
feat_type = "rna",
show_plot = TRUE)
Perform PCA on the visiumHD
and display a scree plot for
the first 30 principal components.
visiumHD <- runPCA(gobject = visiumHD,
feat_type = "rna")
screePlot(visiumHD,
ncp = 30,
feat_type = "rna")
To visiulize PCA we use the function plotPCA
plotPCA(gobject = visiumHD,
feat_type = "rna")
Run UMAP using the first 10 dimensions and visualize the results.
Create a shared (default) nearest network in PCA space (or directly on matrix). Cluster on nearest network with Leiden or Louvain (k-means and hclust are alternatives).
# Create shared nearest network (SNN) and perform leiden clustering
visiumHD <- createNearestNetwork(gobject = visiumHD,
dimensions_to_use = 1:10,
k = 30,
feat_type = "rna")
visiumHD <- doLeidenCluster(gobject = visiumHD,
feat_type = "rna",
resolution = 1,
n_iterations = 10)
# visualize UMAP cluster results
plotUMAP(gobject = visiumHD,
cell_color = "leiden_clus",
feat_type = "rna",
show_NN_network = TRUE,
point_size = 2)
Spat plot for hex400 bin colored by leiden clusters.
spatInSituPlotPoints(visiumHD,
show_image = FALSE,
feats = NULL,
show_legend = FALSE,
point_size = 0.25,
show_polygon = TRUE,
use_overlap = FALSE,
polygon_feat_type = "hexagon400",
polygon_fill_as_factor = TRUE,
polygon_fill = "leiden_clus",
polygon_color = "black",
polygon_line_size = 0.3)
In this section, we will use the binSpect method to quickly rank genes based on their potential for exhibiting spatially coherent expression patterns.
featData <- fDataDT(visiumHD)
hvf_genes <- featData[hvf == "yes"]$feat_ID
visiumHD <- createSpatialNetwork(visiumHD,
name = "kNN_network",
method = "kNN",
k = 8)
ranktest <- binSpect(visiumHD,
subset_feats = hvf_genes,
bin_method = "rank",
calc_hub = FALSE,
do_fisher_test = TRUE,
spatial_network_name = "kNN_network")
Visualize the top ranked spatial genes for different expression bins.
set0 <- ranktest[high_expr < 50][1:2]$feats
set1 <- ranktest[high_expr > 50 & high_expr < 100][1:2]$feats
set2 <- ranktest[high_expr > 100 & high_expr < 200][1:2]$feats
set3 <- ranktest[high_expr > 200 & high_expr < 400][1:2]$feats
set4 <- ranktest[high_expr > 400 & high_expr < 1000][1:2]$feats
set5 <- ranktest[high_expr > 1000][1:2]$feats
spatFeatPlot2D(visiumHD,
expression_values = "scaled",
feats = c(set0, set1, set2),
gradient_style = "sequential",
cell_color_gradient = c("blue", "white", "yellow", "orange", "red", "darkred"),
cow_n_col = 2,
point_size = 1)
spatFeatPlot2D(visiumHD,
expression_values = "scaled",
feats = c(set3, set4, set5),
gradient_style = "sequential",
cell_color_gradient = c("blue", "white", "yellow", "orange", "red", "darkred"),
cow_n_col = 2,
point_size = 1)
While investigating individual genes is a valuable initial step, our goal here is to uncover recurring spatial expression patterns linked to spatial co-expression modules. These modules could indicate spatially organized biological processes.
ext_spatial_genes <- ranktest[adj.p.value < 0.001]$feats
spat_cor_netw_DT <- detectSpatialCorFeats(visiumHD,
method = "network",
spatial_network_name = "kNN_network",
subset_feats = ext_spatial_genes)
# cluster spatial genes
spat_cor_netw_DT <- clusterSpatialCorFeats(spat_cor_netw_DT,
name = "spat_netw_clus",
k = 16)
# visualize clusters
heatmSpatialCorFeats(visiumHD,
spatCorObject = spat_cor_netw_DT,
use_clus_name = "spat_netw_clus",
heatmap_legend_param = list(title = NULL))
# create metagene enrichment score for clusters
cluster_genes_DT <- showSpatialCorFeats(spat_cor_netw_DT,
use_clus_name = "spat_netw_clus",
show_top_feats = 1)
cluster_genes <- cluster_genes_DT$clus
names(cluster_genes) <- cluster_genes_DT$feat_ID
visiumHD <- createMetafeats(visiumHD,
expression_values = "normalized",
feat_clusters = cluster_genes,
name = "cluster_metagene")
showGiottoSpatEnrichments(visiumHD)
spatCellPlot(visiumHD,
spat_enr_names = "cluster_metagene",
gradient_style = "sequential",
cell_color_gradient = c("blue", "white", "yellow", "orange", "red", "darkred"),
cell_annotation_values = as.character(c(1:4)),
point_size = 2,
cow_n_col = 2)
spatCellPlot(visiumHD,
spat_enr_names = "cluster_metagene",
gradient_style = "sequential",
cell_color_gradient = c("blue", "white", "yellow", "orange", "red", "darkred"),
cell_annotation_values = as.character(c(5:8)),
point_size = 1,
cow_n_col = 2)
spatCellPlot(visiumHD,
spat_enr_names = "cluster_metagene",
gradient_style = "sequential",
cell_color_gradient = c("blue", "white", "yellow", "orange", "red", "darkred"),
cell_annotation_values = as.character(c(9:12)),
point_size = 1,
cow_n_col = 2)
spatCellPlot(visiumHD,
spat_enr_names = "cluster_metagene",
gradient_style = "sequential",
cell_color_gradient = c("blue", "white", "yellow", "orange", "red", "darkred"),
cell_annotation_values = as.character(c(13:16)),
point_size = 1,
cow_n_col = 2)
Rather than focusing solely on individual spatial gene expression patterns, we’ll mirror a common approach by choosing a balanced set of genes for each spatial co-expression module and assigning them a consistent color in the spatInSituPlotPoints function.
balanced_genes <- getBalancedSpatCoexpressionFeats(spatCorObject = spat_cor_netw_DT,
maximum = 5)
selected_feats <- names(balanced_genes)
# give genes from same cluster same color
giotto_colors <- getDistinctColors(n = 20)
names(giotto_colors) <- 1:20
my_colors <- giotto_colors[balanced_genes]
names(my_colors) <- names(balanced_genes)
spatInSituPlotPoints(visiumHD,
show_image = FALSE,
feats = list("rna" = selected_feats),
feats_color_code = my_colors,
show_legend = FALSE,
point_size = 0.20,
show_polygon = FALSE,
use_overlap = FALSE,
polygon_feat_type = "hexagon400",
polygon_bg_color = NA,
polygon_color = "white",
polygon_line_size = 0.01,
jitter = c(25,25))
R version 4.4.0 (2024-04-24)
Platform: x86_64-pc-linux-gnu
Running under: AlmaLinux 8.10 (Cerulean Leopard)
Matrix products: default
BLAS/LAPACK: FlexiBLAS NETLIB; LAPACK version 3.11.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: America/New_York
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggplot2_3.5.1 Giotto_4.1.0 GiottoClass_0.3.4
loaded via a namespace (and not attached):
[1] RColorBrewer_1.1-3 rstudioapi_0.16.0 jsonlite_1.8.8
[4] shape_1.4.6.1 magrittr_2.0.3 magick_2.8.4
[7] farver_2.1.2 rmarkdown_2.26 GlobalOptions_0.1.2
[10] zlibbioc_1.50.0 vctrs_0.6.5 Cairo_1.6-2
[13] GiottoUtils_0.1.11 terra_1.7-78 htmltools_0.5.8.1
[16] S4Arrays_1.4.1 SparseArray_1.4.8 parallelly_1.37.1
[19] htmlwidgets_1.6.4 plyr_1.8.9 plotly_4.10.4
[22] igraph_2.0.3 lifecycle_1.0.4 iterators_1.0.14
[25] pkgconfig_2.0.3 rsvd_1.0.5 Matrix_1.7-0
[28] R6_2.5.1 fastmap_1.1.1 GenomeInfoDbData_1.2.12
[31] MatrixGenerics_1.16.0 future_1.33.2 clue_0.3-65
[34] digest_0.6.35 colorspace_2.1-1 S4Vectors_0.42.1
[37] irlba_2.3.5.1 GenomicRanges_1.56.0 beachmat_2.20.0
[40] labeling_0.4.3 progressr_0.14.0 fansi_1.0.6
[43] httr_1.4.7 abind_1.4-5 compiler_4.4.0
[46] bit64_4.0.5 withr_3.0.1 doParallel_1.0.17
[49] backports_1.5.0 BiocParallel_1.38.0 DBI_1.2.2
[52] R.utils_2.12.3 rappdirs_0.3.3 DelayedArray_0.30.1
[55] rjson_0.2.21 gtools_3.9.5 GiottoVisuals_0.2.4
[58] tools_4.4.0 future.apply_1.11.2 R.oo_1.26.0
[61] glue_1.7.0 dbscan_1.2-0 grid_4.4.0
[64] checkmate_2.3.2 cluster_2.1.6 reshape2_1.4.4
[67] generics_0.1.3 gtable_0.3.5 R.methodsS3_1.8.2
[70] tidyr_1.3.1 data.table_1.15.4 BiocSingular_1.20.0
[73] ScaledMatrix_1.12.0 sp_2.1-4 utf8_1.2.4
[76] XVector_0.44.0 BiocGenerics_0.50.0 ggrepel_0.9.5
[79] foreach_1.5.2 pillar_1.9.0 stringr_1.5.1
[82] circlize_0.4.16 dplyr_1.1.4 lattice_0.22-6
[85] FNN_1.1.4 bit_4.0.5 deldir_2.0-4
[88] tidyselect_1.2.1 ComplexHeatmap_2.20.0 SingleCellExperiment_1.26.0
[91] Biostrings_2.72.0 knitr_1.46 IRanges_2.38.1
[94] SummarizedExperiment_1.34.0 scattermore_1.2 stats4_4.4.0
[97] xfun_0.43 Biobase_2.64.0 matrixStats_1.3.0
[100] stringi_1.8.4 UCSC.utils_1.0.0 lazyeval_0.2.2
[103] yaml_2.3.10 evaluate_0.23 codetools_0.2-20
[106] tibble_3.2.1 colorRamp2_0.1.0 cli_3.6.2
[109] uwot_0.2.2 arrow_15.0.1 reticulate_1.36.1
[112] munsell_0.5.1 Rcpp_1.0.12 GenomeInfoDb_1.40.0
[115] globals_0.16.3 dbplyr_2.5.0 png_0.1-8
[118] parallel_4.4.0 assertthat_0.2.1 listenv_0.9.1
[121] SpatialExperiment_1.14.0 viridisLite_0.4.2 scales_1.3.0
[124] purrr_1.0.2 crayon_1.5.3 GetoptLong_1.0.5
[127] rlang_1.1.3 cowplot_1.1.3