Giotto is a technique-agnostic framework and toolbox for spatial-omic analysis. Its structure and classes are designed to be flexible, intuitive, and readable. The framework supports working with both aggregate (cell x count) and un-aggregated spatial data where the polygon annotations are separate from the spatial expression data.

1 Giotto Object Structure

Usage of the Giotto package revolves around the giotto object. This is an S4 class that holds spatial expression data and facilitates its manipulation and visualization with the Giotto package”s functions. Additional metadata and other outputs generated from certain functions, which may be used in downstream analyses, are also be stored within the giotto object. Its self-contained nature provides a convenient representation of the entire spatial experiment and is why most Giotto functions take a given giotto object as input and return a giotto object as output.

Data is organized within the giotto object in defined slots as described in the diagram below.

2 Nested Organization of the Giotto Object

Biology happens across multiple scales of size and types of modalities. While it is possible to simply generate a new object for each combination of the two, the fact that data from most spatial methods are both high resolution and spatially contiguous, requires a more flexible approach that permits the coexistence of multiple spatial units within the same object. This allows the user to define the spatial unit(s) of biology that are most relevant to the analysis and re-aggregate the feature information to those units.

With this organization it is convenient to compare expression across different spatial units. Additionally, by determining spatial overlaps between these spatial units, it becomes possible to represent the hierarchical organization of biological subunits and make queries using it.

2.1 Spatial unit and feature type

To accommodate this complexity, information is subnested within many of the giotto object”s slots first by spat_unit (spatial unit) and then by feat_type (feature type). This structurally separates each set of information within Giotto”s framework so that there is minimal ambiguity.

A summary of what information the object contains can be viewed by directly returning it.

library(Giotto)
library(data.table)

vizmini <- GiottoData::loadGiottoMini("vizgen")
vizmini

Included below is a description of the giotto object subnesting for each data slot and also the accessor functions for setting and getting information from them.

Slot Nested Example Internal Accessors
@expression spat_unit - getExpression()
feat_type - cell - rna - raw setExpression()
name
————————— ———————— ———————————- ————————-
@cell_metadata spat_unit - cell - rna getCellMetadata()
feat_type setCellMetadata()
————————— ———————— ———————————- ————————-
@feat_metadata spat_unit - cell - rna getFeatMetadata()
feat_type setFeatMetadata()
————————— ———————— ———————————- ————————-
@spatial_grid spat_unit - grid- grid getSpatialGrid()
name setSpatialGrid()
————————— ———————— ———————————- ————————-
@dimension_reduction approach -
spat_unit - getDimReduction()
feat_type - cells - cell - rna - pca - pca setDimReduction()
method -
name
————————— ———————— ———————————- ————————-
@multiomics spat_unit -
feat_type - cell - rna-protein - WNN - theta_weighted_matrix getMultiomics()
method - setMultiomics()
name
————————— ———————— ———————————- ————————-
@nn_network spat_unit- getNearestNetwork()
method - cell - sNN - sNN_results1 setNearestNetwork()
name
————————— ———————— ———————————- ————————-
@spatial_enrichment spat_unit - getSpatialEnrichment()
feat_type - cell - rna - results1 setSpatialEnrichment()
name
————————— ———————— ———————————- ————————-
@spatial_info spat_unit cell getPolygonInfo()
setPolygonInfo()
————————— ———————— ———————————- ————————-
@spatial_locs spat_unit - cell - raw getSpatialLocations()
name setSpatialLocations()
————————— ———————— ———————————- ————————-
@spatial_network spat_unit - cell - Delaunay_network1 getSpatialNetwork()
name setSpatialNetwork()
————————— ———————— ———————————- ————————-
@feat_info feat_type rna getFeatureInfo()
setFeatureInfo()
————————— ———————— ———————————- ————————-
@images name image getGiottoImage()
setGiottoImage()
————————— ———————— ———————————- ————————-
@largeImages name image getGiottoImage()
setGiottoImage()
————————— ———————— ———————————- ————————-
@instructions instructions()
————————— ———————— ———————————- ————————-

2.2 Show and list functions

Show and list functions are also provided for determining what information exists within each of these slots and its nesting.

  • show functions print a preview of all the data within the slot, but do not return information
# Find specific spat_unit objects #
list_expression(vizmini, 
                spat_unit = "z0")
  • list names (internal) functions return a vector of object names at the specified nesting
list_expression_names(vizmini, 
                      spat_unit = "z1", 
                      feat_type = "rna")

2.3 Provenance

Going further, sometimes different sources of information can be used when aggregating to a particular spatial unit. This is most easily shown with the subcellular datasets from the Vizgen MERSCOPE platform which provide both feature polygon information for multiple confocal planes within a tissue. The aggregated information produced then could be drawn from different z-planes or combinations thereof. Giotto tracks this provenance information for each set of aggregated data.

expr_mat <- getExpression(vizmini, 
                          spat_unit = "aggregate")

prov(expr_mat)

3 Giotto subobjects

Giotto 3.0 update introduced S4 subobjects that are used within the giotto object and its processing. These subobjects provide more formalized definitions for what information and formatting is needed in each of the giotto object slots in order for it to be functional. These objects are standalone and extensible and commonly used spatial manipulation and plotting methods are being implemented for them.

In addition, these subobjects carry several pieces of metadata in additional slots alongside the main information (e.g. also slots for spat_unit and feat_type alongside the exprDT slot for the exprObj S4). This makes it so that nesting information is retained when they are taken out of the giotto object and that nesting information does not need to be supplied anymore when interacting with the setter functions.

getter functions now have an output param that defaults to extracting the information from the giotto object as the S4 subobject. When extracting information that will be modified and then returned to the giotto object, it is preferred that the information is extracted as the S4 both so that tagged information is not lost, and because it is convenient to work with the S4”s main data slot through the [ and [<- generics (see Section 3.5).

3.1 Creating an S4 subobject

3.1.1 Constructors

For directly creating a subobject, constructor functions can be used.

constructors

createExprObj() createCellMetaObj() createFeatMetaObj() createDimObj() createNearestNetObj() createSpatLocsObj() createSpatNetObj() createSpatEnrObj() createSpatialGrid() createGiottoPoints() createGiottoPolygonsFromDfr() createGiottoPolygonsFromMask() createGiottoImage() createGiottoLargeImage()

coords <- data.table(
  sdimx = c(1,2,3),
  sdimy = c(1,2,3),
  cell_ID = c("A","B","C")
)

st <- createSpatLocsObj(name = "test",
                        spat_unit = "cell",
                        coordinates = coords,
                        provenance = "cell")

There are non numeric or integer columns for the spatial location input at column position(s): 3 The first non-numeric column will be considered as a cell ID to test for consistency with the expression matrix. Other non numeric columns will be removed

print(st)

3.1.2 Readers

Alternatively, read functions can be used to take named nested lists of raw data input and convert them to lists of subobjects which are directly usable by the setter functions.

readers

readPolygonData() readFeatData() readExprData() readCellMetadata() readFeatMetadata() readSpatLocsData() readSpatNetData() readSpatEnrichData() readDimReducData() readNearestNetData()

st2 <- readSpatLocsData(list(cell2 = list(test1 = coords,
                                         test2 = coords)))

There are non numeric or integer columns for the spatial location input at column position(s): 3. The first non-numeric column will be considered as a cell ID to test for consistency with the expression matrix. Other non numeric columns will be removed

There are non numeric or integer columns for the spatial location input at column position(s): 3. The first non-numeric column will be considered as a cell ID to test for consistency with the expression matrix. Other non numeric columns will be removed

st2

3.2 Giotto Accessors

Giotto provides getter and setter functions for manually accessing the information contained within the giotto object. Note that the setters require that the data be provided as compatible S4 subobjects or lists thereof. External data can read into the appropriate formats using the above reader functions. The getter functions return S4 subobjects by default.

getters

getExpression() getCellMetadata() getFeatMetadata() getSpatialLocations() getDimReduction() getNearestNetwork() getSpatialNetwork() getPolygonInfo() getFeatureInfo() getSpatialEnrichment() getGiottoImage()

setters

setExpression() setCellMetadata() setFeatureMetadata() setSpatialLocations() setDimReduction() setNearestNetwork() setSpatialNetwork() setPolygonInfo() setFeatureInfo() setSpatialEnrichment() setGiottoImage()

expval <- getExpression(vizmini)

expval

3.3 Get and set S4 spat_unit, feat_type, provenance

spatUnit(), featType(), and prov() are replacement functions for tagged spatial unit, feature type, and provenance information respectively.

# spat_unit
spatUnit(expval) <- "new_spat"

spatUnit(expval)
# feat_type
featType(expval) <- "new_feat"

featType(expval)
# provenance
prov(expval) <- "cell"

prov(expval)

3.4 Setting an S4 subobject

The spat_unit, feat_type, and name params no longer need to be given when setting an S4 subobject with tagged information into a giottoObject. However, if input is given to the set function parameters then it is prioritized over the tagged information and the tagged information is updated.

# set exprObj to tagged nesting location
vizmini <- setExpression(vizmini, 
                         expval)

3.5 Working with S4 subobjects

Giotto”s S4 subobjects each wrap one main data object. The empty [] and []<- operators are defined as shorthand for directly accessing this slot that contains the data. For example, with a spatLocsObj:

class(spatLocsObj[]) is equivalent to class(spatLocsObj@coordinates)

In this way, the S4 subobjects can be used in contexts that the wrapped objects could be.

st <- getSpatialLocations(vizmini)

class(st)
# With empty brackets
class(st[])

Setting information

st
st[] <- coords

st

3.6 Session Info

R version 4.4.0 (2024-04-24)
Platform: x86_64-apple-darwin20
Running under: macOS Sonoma 14.5

Matrix products: default
BLAS:   /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] data.table_1.15.4 Giotto_4.1.0      GiottoClass_0.3.4

loaded via a namespace (and not attached):
 [1] tidyselect_1.2.1            viridisLite_0.4.2           dplyr_1.1.4                
 [4] GiottoVisuals_0.2.4         lazyeval_0.2.2              fastmap_1.2.0              
 [7] SingleCellExperiment_1.26.0 digest_0.6.36               lifecycle_1.0.4            
[10] terra_1.7-78                magrittr_2.0.3              dbscan_1.2-0               
[13] compiler_4.4.0              rlang_1.1.4                 tools_4.4.0                
[16] igraph_2.0.3                utf8_1.2.4                  yaml_2.3.10                
[19] knitr_1.48                  htmlwidgets_1.6.4           S4Arrays_1.4.1             
[22] sp_2.1-4                    reticulate_1.38.0           DelayedArray_0.30.1        
[25] plyr_1.8.9                  xml2_1.3.6                  RColorBrewer_1.1-3         
[28] abind_1.4-5                 withr_3.0.0                 purrr_1.0.2                
[31] BiocGenerics_0.50.0         grid_4.4.0                  stats4_4.4.0               
[34] fansi_1.0.6                 colorspace_2.1-1            ggplot2_3.5.1              
[37] scales_1.3.0                gtools_3.9.5                SummarizedExperiment_1.34.0
[40] cli_3.6.3                   rmarkdown_2.27              crayon_1.5.3               
[43] generics_0.1.3              rstudioapi_0.16.0           reshape2_1.4.4             
[46] httr_1.4.7                  rjson_0.2.21                stringr_1.5.1              
[49] zlibbioc_1.50.0             parallel_4.4.0              XVector_0.44.0             
[52] matrixStats_1.3.0           vctrs_0.6.5                 Matrix_1.7-0               
[55] jsonlite_1.8.8              GiottoData_0.2.13           IRanges_2.38.1             
[58] S4Vectors_0.42.1            ggrepel_0.9.5               scattermore_1.2            
[61] systemfonts_1.1.0           magick_2.8.4                GiottoUtils_0.1.10         
[64] plotly_4.10.4               tidyr_1.3.1                 glue_1.7.0                 
[67] codetools_0.2-20            cowplot_1.1.3               stringi_1.8.4              
[70] gtable_0.3.5                GenomeInfoDb_1.40.1         deldir_2.0-4               
[73] GenomicRanges_1.56.1        UCSC.utils_1.0.0            munsell_0.5.1              
[76] tibble_3.2.1                pillar_1.9.0                htmltools_0.5.8.1          
[79] GenomeInfoDbData_1.2.12     R6_2.5.1                    evaluate_0.24.0            
[82] kableExtra_1.4.0            lattice_0.22-6              Biobase_2.64.0             
[85] png_0.1-8                   backports_1.5.0             SpatialExperiment_1.14.0   
[88] Rcpp_1.0.13                 svglite_2.1.3               SparseArray_1.4.8          
[91] checkmate_2.3.2             colorRamp2_0.1.0            xfun_0.46                  
[94] MatrixGenerics_1.16.0       pkgconfig_2.0.3