Adjust expression values to account for known batch effects or technological covariates.
adjustGiottoMatrix(
gobject,
spat_unit = NULL,
feat_type = NULL,
expression_values = c("normalized", "scaled", "custom"),
batch_columns = NULL,
covariate_columns = NULL,
name = "custom",
return_gobject = TRUE,
update_slot = deprecated()
)
giotto object
spatial unit (e.g. "cell")
feature type (e.g. "rna", "dna", "protein")
expression values to use
metadata columns that represent different batch (max = 2)
metadata columns that represent covariates to regress out
character. Name to assign to adjusted matrix (default = "custom")
boolean: return giotto object (default = TRUE)
deprecated.
giotto object or exprObj
This function implements the removeBatchEffect
function to remove known batch effects and to adjust expression values
according to provided covariates.
g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#> active environment : '/usr/bin/python3'
#> python version : 3.12
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#> "/usr/bin/python3"
adjustGiottoMatrix(g, covariate_columns = "leiden_clus")
#> Setting expression [cell][rna] custom
#> An object of class giotto
#> >Active spat_unit: cell
#> >Active feat_type: rna
#> dimensions : 634, 624 (features, cells)
#> [SUBCELLULAR INFO]
#> polygons : cell
#> [AGGREGATE INFO]
#> expression -----------------------
#> [cell][rna] raw normalized scaled custom
#> spatial locations ----------------
#> [cell] raw
#> spatial networks -----------------
#> [cell] Delaunay_network spatial_network
#> spatial enrichments --------------
#> [cell][rna] cluster_metagene DWLS
#> dim reduction --------------------
#> [cell][rna] pca custom_pca umap custom_umap tsne
#> nearest neighbor networks --------
#> [cell][rna] sNN.pca custom_NN
#> attached images ------------------
#> images : alignment image
#>
#>
#> Use objHistory() to see steps and params used