compute highly variable features

calculateHVF(
  gobject,
  spat_unit = NULL,
  feat_type = NULL,
  expression_values = c("normalized", "scaled", "custom"),
  method = c("cov_groups", "cov_loess", "var_p_resid"),
  reverse_log_scale = FALSE,
  logbase = 2,
  expression_threshold = 0,
  nr_expression_groups = 20,
  zscore_threshold = 1.5,
  HVFname = "hvf",
  difference_in_cov = 0.1,
  var_threshold = 1.5,
  var_number = NULL,
  random_subset = NULL,
  set_seed = TRUE,
  seed_number = 1234,
  show_plot = NULL,
  return_plot = NULL,
  save_plot = NULL,
  save_param = list(),
  default_save_name = "HVFplot",
  return_gobject = TRUE,
  verbose = TRUE
)

Arguments

gobject

giotto object

spat_unit

spatial unit

feat_type

feature type

expression_values

expression values to use

method

method to calculate highly variable features

reverse_log_scale

reverse log-scale of expression values (default = FALSE)

logbase

if reverse_log_scale is TRUE, which log base was used?

expression_threshold

expression threshold to consider a gene detected

nr_expression_groups

(cov_groups) number of expression groups for cov_groups

zscore_threshold

(cov_groups) zscore to select hvg for cov_groups

HVFname

name for highly variable features in cell metadata

difference_in_cov

(cov_loess) minimum difference in coefficient of variance required

var_threshold

(var_p_resid) variance threshold for features for var_p_resid method

var_number

(var_p_resid) number of top variance features for var_p_resid method

random_subset

random subset to perform HVF detection on. Passing NULL runs HVF on all cells.

set_seed

logical. whether to set a seed when random_subset is used

seed_number

seed number to use when random_subset is used

show_plot

show plot

return_plot

return ggplot object (overridden by return_gobject)

save_plot

logical. directly save the plot

save_param

list of saving parameters from GiottoVisuals::all_plots_save_function()

default_save_name

default save name for saving, don't change, change save_name in save_param

return_gobject

boolean: return giotto object (default = TRUE)

verbose

be verbose

Value

giotto object highly variable features appended to feature metadata (fDataDT())

Details

Currently we provide 2 ways to calculate highly variable genes:

1. high coeff of variance (COV) within groups:
First genes are binned (nr_expression_groups) into average expression groups and the COV for each feature is converted into a z-score within each bin. Features with a z-score higher than the threshold (zscore_threshold) are considered highly variable.

2. high COV based on loess regression prediction:
A predicted COV is calculated for each feature using loess regression (COV~log(mean expression)) Features that show a higher than predicted COV (difference_in_cov) are considered highly variable.

Examples

g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#>  active environment : '/usr/bin/python3'
#>  python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#>  "/usr/bin/python3"

calculateHVF(g)
#> hvf has already been used, will be overwritten
#> An object of class giotto 
#> >Active spat_unit:  cell 
#> >Active feat_type:  rna 
#> dimensions    : 634, 624 (features, cells)
#> [SUBCELLULAR INFO]
#> polygons      : cell 
#> [AGGREGATE INFO]
#> expression -----------------------
#>   [cell][rna] raw normalized scaled
#> spatial locations ----------------
#>   [cell] raw
#> spatial networks -----------------
#>   [cell] Delaunay_network spatial_network
#> spatial enrichments --------------
#>   [cell][rna] cluster_metagene DWLS
#> dim reduction --------------------
#>   [cell][rna] pca custom_pca umap custom_umap tsne
#> nearest neighbor networks --------
#>   [cell][rna] sNN.pca custom_NN
#> attached images ------------------
#> images      : alignment image 
#> 
#> 
#> Use objHistory() to see steps and params used