Visualize cell-cell interactions according to spatial coordinates
cellProximityVisPlot(
gobject,
interaction_name = NULL,
cluster_column = NULL,
sdimx = NULL,
sdimy = NULL,
sdimz = NULL,
cell_color = NULL,
cell_color_code = NULL,
color_as_factor = TRUE,
show_other_cells = FALSE,
show_network = FALSE,
show_other_network = FALSE,
network_color = NULL,
spatial_network_name = "Delaunay_network",
show_grid = FALSE,
grid_color = NULL,
spatial_grid_name = "spatial_grid",
coord_fix_ratio = 1,
show_legend = TRUE,
point_size_select = 2,
point_select_border_col = "black",
point_select_border_stroke = 0.05,
point_size_other = 1,
point_alpha_other = 0.3,
point_other_border_col = "lightgrey",
point_other_border_stroke = 0.01,
axis_scale = c("cube", "real", "custom"),
custom_ratio = NULL,
x_ticks = NULL,
y_ticks = NULL,
z_ticks = NULL,
plot_method = c("ggplot", "plotly"),
...
)
giotto object
cell-cell interaction name
cluster column with cell clusters
x-axis dimension name (default = 'sdimx')
y-axis dimension name (default = 'sdimy')
z-axis dimension name (default = 'sdimz')
color for cells (see details)
named vector with colors
convert color column to factor
show not selected cells
show underlying spatial network
show underlying spatial network of other cells
color of spatial network
name of spatial network to use
show spatial grid
color of spatial grid
name of spatial grid to use
fix ratio between x and y-axis
show legend
size of selected points
border color of selected points
stroke size of selected points
size of other points
alpha of other points
border color of other points
stroke size of other points
scale of axis
custom ratio of scales
x ticks
y ticks
z ticks
method to plot
additional parameters
ggplot or plotly
Description of parameters.
g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#> active environment : '/usr/bin/python3'
#> python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#> "/usr/bin/python3"
g <- createSpatialGrid(g, sdimx_stepsize = 5, sdimy_stepsize = 5)
x <- cellProximityEnrichment(g, cluster_column = "leiden_clus")
cellProximityVisPlot(
gobject = g, interaction_name = x,
cluster_column = "leiden_clus", sdimx = "sdimx", sdimy = "sdimy"
)