cluster cells using kmeans algorithm
doKmeans(
gobject,
feat_type = NULL,
spat_unit = NULL,
expression_values = c("normalized", "scaled", "custom"),
feats_to_use = NULL,
dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
dim_reduction_name = "pca",
dimensions_to_use = 1:10,
distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
"manhattan", "canberra", "binary", "minkowski"),
centers = 10,
iter_max = 100,
nstart = 1000,
algorithm = "Hartigan-Wong",
name = "kmeans",
return_gobject = TRUE,
set_seed = TRUE,
seed_number = 1234
)
giotto object
feature type (e.g. "cell")
spatial unit (e.g. "rna", "dna", "protein")
expression values from list_expression() (e.g. "normalized", "scaled", "custom")
(optional) subset of features to use
dimension reduction from list_dim_reductions() (e.g. "pca", "umap", "tsne")
dimensions reduction name, default to "pca"
dimensions to use, default = 1:10
distance method (e.g. "original", "pearson", "spearman", "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski")
number of final clusters, default = 10
kmeans maximum iterations, default = 100
kmeans nstart, default = 1000
kmeans algorithm, default to "Hartigan-Wong"
name for kmeans clustering, default to "kmeans"
boolean: return giotto object (default = TRUE)
set seed (default = TRUE)
number for seed
if return_gobject = TRUE: giotto object with new clusters appended to cell metadata
The default settings will use dimension reduction results as input. Set dim_reduction_to_use = NULL if you want to directly use expression values as input. By providing a feature vector to feats_to_use you can subset the expression matrix.
g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#> active environment : '/usr/bin/python3'
#> python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#> "/usr/bin/python3"
doKmeans(g)
#> An object of class giotto
#> >Active spat_unit: cell
#> >Active feat_type: rna
#> dimensions : 634, 624 (features, cells)
#> [SUBCELLULAR INFO]
#> polygons : cell
#> [AGGREGATE INFO]
#> expression -----------------------
#> [cell][rna] raw normalized scaled
#> spatial locations ----------------
#> [cell] raw
#> spatial networks -----------------
#> [cell] Delaunay_network spatial_network
#> spatial enrichments --------------
#> [cell][rna] cluster_metagene DWLS
#> dim reduction --------------------
#> [cell][rna] pca custom_pca umap custom_umap tsne
#> nearest neighbor networks --------
#> [cell][rna] sNN.pca custom_NN
#> attached images ------------------
#> images : alignment image
#>
#>
#> Use objHistory() to see steps and params used