Identify marker feats for selected clusters based on gini detection and expression scores.

findGiniMarkers(
  gobject,
  feat_type = NULL,
  spat_unit = NULL,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  group_1 = NULL,
  group_1_name = NULL,
  group_2 = NULL,
  group_2_name = NULL,
  min_expr_gini_score = 0.2,
  min_det_gini_score = 0.2,
  detection_threshold = 0,
  rank_score = 1,
  min_feats = 5,
  min_genes = NULL
)

Arguments

gobject

giotto object

feat_type

feature type

spat_unit

spatial unit

expression_values

feat expression values to use

cluster_column

clusters to use

subset_clusters

selection of clusters to compare

group_1

group 1 cluster IDs from cluster_column for pairwise comparison

group_1_name

custom name for group_1 clusters

group_2

group 2 cluster IDs from cluster_column for pairwise comparison

group_2_name

custom name for group_2 clusters

min_expr_gini_score

filter on minimum gini coefficient for expression

min_det_gini_score

filter on minimum gini coefficient for detection

detection_threshold

detection threshold for feat expression

rank_score

rank scores for both detection and expression to include

min_feats

minimum number of top feats to return

min_genes

deprecated, use min_feats

Value

data.table with marker feats

Details

Detection of marker feats using the gini coefficient is based on the following steps/principles per feat:

  1. calculate average expression per cluster

  2. calculate detection fraction per cluster

  3. calculate gini-coefficient for av. expression values over all clusters

  4. calculate gini-coefficient for detection fractions over all clusters

  5. convert gini-scores to rank scores

  6. for each feat create combined score = detection rank x expression rank x expr gini-coefficient x detection gini-coefficient

  7. for each feat sort on expression and detection rank and combined score

As a results "top gini" feats are feats that are very selectivily expressed in a specific cluster, however not always expressed in all cells of that cluster. In other words highly specific, but not necessarily sensitive at the single-cell level.

To perform differential expression between custom selected groups of cells you need to specify the cell_ID column to parameter cluster_column and provide the individual cell IDs to the parameters group_1 and group_2

By default group names will be created by pasting the different id names within each selected group. When you have many different ids in a single group it is recommend to provide names for both groups to group_1_name and group_2_name

Examples

g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#>  active environment : '/usr/bin/python3'
#>  python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#>  "/usr/bin/python3"

findGiniMarkers(g, cluster_column = "leiden_clus")
#>               feats cluster expression expression_gini  detection
#>              <char>  <char>      <num>           <num>      <num>
#>    1:        Mustn1       2  0.2675877      0.48429164 0.09836066
#>    2:          Inmt       2  0.1386324      0.45249410 0.04918033
#>    3: 1700001C02Rik       2  0.1892710      0.42740432 0.05737705
#>    4:          Nid1       2  0.2155386      0.42306445 0.07377049
#>    5:       Slc13a4       2  0.3299290      0.34576465 0.11475410
#>   ---                                                            
#> 3467:        Hbb-bt       4  5.3661664      0.01907350 0.96774194
#> 3468:       Plekhb1       4  5.0305237      0.01466618 0.97849462
#> 3469:        Hba-a2       4  5.9526050      0.01088350 1.00000000
#> 3470:        Hba-a1       4  6.4266566      0.01066553 1.00000000
#> 3471:          Mobp       4  6.1045819      0.01621459 0.97849462
#>       detection_gini expression_rank detection_rank   comb_score comb_rank
#>                <num>           <num>          <num>        <num>     <int>
#>    1:    0.480512956            1.00           1.00 2.327084e-01         1
#>    2:    0.462963624            1.00           1.00 2.094883e-01         2
#>    3:    0.395271870            1.00           0.85 1.435998e-01         3
#>    4:    0.396825403            0.85           0.85 1.212953e-01         4
#>    5:    0.324223187            1.00           1.00 1.121049e-01         5
#>   ---                                                                     
#> 3467:    0.008635794            0.10           0.25 4.117870e-06       630
#> 3468:    0.006564403            0.10           0.40 3.850988e-06       631
#> 3469:    0.003836637            0.10           0.85 3.549264e-06       632
#> 3470:    0.003688736            0.10           0.70 2.753962e-06       633
#> 3471:    0.003879016            0.10           0.10 6.289666e-07       634