Identify marker feats for all clusters in a one vs all manner based on scran's implementation of findMarkers.

findScranMarkers_one_vs_all(
  gobject,
  spat_unit = NULL,
  feat_type = NULL,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  pval = 0.01,
  logFC = 0.5,
  min_feats = 10,
  min_genes = NULL,
  verbose = TRUE,
  ...
)

Arguments

gobject

giotto object

spat_unit

spatial unit

feat_type

feature type

expression_values

feat expression values to use

cluster_column

clusters to use

subset_clusters

subset of clusters to use

pval

filter on minimal p-value

logFC

filter on logFC

min_feats

minimum feats to keep per cluster, overrides pval and logFC

min_genes

deprecated, use min_feats

verbose

be verbose

...

additional parameters for the findMarkers function in scran

Value

data.table with marker feats

See also

Examples

g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#>  active environment : '/usr/bin/python3'
#>  python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#>  "/usr/bin/python3"

findScranMarkers_one_vs_all(g, cluster_column = "leiden_clus")
#> using 'Scran' to detect marker feats. If used in published
#>       research, please cite: Lun ATL, McCarthy DJ, Marioni JC (2016).
#>       'A step-by-step workflow for low-level analysis of single-cell RNA-seq
#>       data with Bioconductor.'
#>       F1000Res., 5, 2122. doi: 10.12688/f1000research.9501.2. 
#> start with cluster  1start with cluster  2start with cluster  3start with cluster  4start with cluster  5start with cluster  6start with cluster  7
#>       Top     p.value        FDR     logFC    feats cluster ranking
#>     <int>       <num>      <num>     <num>   <char>  <char>   <num>
#>  1:     1 0.000354327 0.19546782 0.4994571   Arpp19       1       3
#>  2:     4 0.002932856 0.44588387 0.5955190    Pde1a       1       1
#>  3:     5 0.003516434 0.44588387 0.5293216   Ipcef1       1       2
#>  4:     6 0.008882113 0.71268782 0.4552590   Camk2d       1       6
#>  5:     7 0.013139650 0.71268782 0.4803266     Ngef       1       4
#>  6:    10 0.016171727 0.71268782 0.4738020     Tbr1       1       5
#>  7:    15 0.018401100 0.71268782 0.4359583     Myl4       1       8
#>  8:    16 0.020925524 0.71268782 0.4179815    Nptxr       1      10
#>  9:    17 0.021056054 0.71268782 0.4410319    Lamp5       1       7
#> 10:    33 0.041136065 0.76110482 0.4264191    Stx1a       1       9
#> 11:     1 0.002208825 0.53711117 0.5832163    Prr18       2       1
#> 12:     2 0.003332138 0.53711117 0.5181029  Carhsp1       2       2
#> 13:     3 0.004700090 0.53711117 0.4810502     Tprn       2       7
#> 14:     4 0.004921900 0.53711117 0.4670464    Padi2       2       9
#> 15:     5 0.005490721 0.53711117 0.4393166    S1pr5       2      11
#> 16:     7 0.006812177 0.53711117 0.3894486    Clic1       2      22
#> 17:     8 0.007043215 0.53711117 0.4882910   Tmbim1       2       6
#> 18:     9 0.007624607 0.53711117 0.5138513  Tmem88b       2       3
#> 19:    10 0.009028757 0.54975200 0.3764765    Cryab       2      26
#> 20:    12 0.011597115 0.54975200 0.4520588   Phldb1       2      10
#> 21:    13 0.012453659 0.54975200 0.4894421    Grb14       2       5
#> 22:    15 0.015239247 0.54975200 0.4697248 Ppp1r14a       2       8
#> 23:    27 0.028652205 0.54975200 0.5009713    Tnnt1       2       4
#> 24:    11 0.015565349 0.81477908 0.3794660     Bcam       3       4
#> 25:    20 0.026477390 0.81477908 0.4633258     Grm1       3       2
#> 26:    22 0.028812026 0.83031020 0.4163589    Itih3       3       3
#> 27:    55 0.091050217 0.96701893 0.3757642    Plcb4       3       5
#> 28:    61 0.100930232 0.96701893 0.4724775    Prkcd       3       1
#> 29:    64 0.110921899 0.96701893 0.3306064  Aldh1a1       3       7
#> 30:    65 0.111962853 0.96701893 0.3296060      Vim       3       8
#> 31:    66 0.114585832 0.96701893 0.2897821    Prox1       3      10
#> 32:    73 0.133643639 0.96701893 0.3633652     Zic1       3       6
#> 33:   107 0.175926132 0.96701893 0.3074804    Vamp1       3       9
#> 34:     7 0.003429921 0.28637427 0.6202705    Pcdh8       4       2
#> 35:     9 0.004989616 0.34768541 0.5338170      Gss       4       5
#> 36:    10 0.005483997 0.34768541 0.6350344     Cygb       4       1
#> 37:    11 0.008053972 0.41605624 0.5981233   Sowaha       4       3
#> 38:    25 0.021696009 0.52964105 0.4588221   Homer3       4       9
#> 39:    31 0.027383336 0.53917299 0.5491473    Wipf3       4       4
#> 40:    33 0.029708388 0.53917299 0.5052576    C1ql2       4       7
#> 41:    38 0.033496196 0.53917299 0.5205546    Calb1       4       6
#> 42:    45 0.038269376 0.53917299 0.4568997   Vstm2l       4      10
#> 43:    73 0.076839208 0.66734326 0.4669022    Synpr       4       8
#> 44:    10 0.032781719 0.96693210 0.4073136  Ppp1r1a       5       5
#> 45:    13 0.035476975 0.96693210 0.3952556 Serpinh1       5       7
#> 46:    16 0.039171568 0.96693210 0.4033382   Cacng5       5       6
#> 47:    17 0.041923751 0.96693210 0.3813645   Suclg2       5       9
#> 48:    23 0.050830947 0.96693210 0.4847041   Bcl11b       5       1
#> 49:    29 0.065093223 0.96693210 0.3870576    Grb14       5       8
#> 50:    35 0.070743235 0.96693210 0.4102664  Pitpnm2       5       4
#> 51:    40 0.091234404 0.96693210 0.4110672   Sowaha       5       3
#> 52:    60 0.118368025 0.96693210 0.4153359  Fam163b       5       2
#> 53:    64 0.121852917 0.96693210 0.3794176     Rora       5      10
#> 54:    13 0.001389098 0.06774522 0.8375194    Smim1       6       1
#> 55:    20 0.008407944 0.24881180 0.6904204      Ttr       6       7
#> 56:    25 0.010250009 0.24881180 0.8264599     Hopx       6       2
#> 57:    30 0.012423050 0.24976015 0.7589815  Siglech       6       5
#> 58:    33 0.013357161 0.24976015 0.7804225    Cldn5       6       3
#> 59:    39 0.022190202 0.36073304 0.6920161   Homer2       6       6
#> 60:    44 0.029494591 0.42499024 0.6463815    Evi2a       6       8
#> 61:    45 0.030635500 0.43137095 0.7611254    Cabp7       6       4
#> 62:    47 0.032523726 0.43137095 0.6352972     Vsir       6       9
#> 63:    51 0.036742690 0.45676206 0.6266049  Cyp2d22       6      10
#> 64:    77 0.019024942 0.15664692 1.0917235     Sypl       7       4
#> 65:    80 0.038112923 0.30204492 1.0720757     Vwa1       7       6
#> 66:    87 0.065087126 0.46778865 1.0877216    Man1a       7       5
#> 67:    92 0.075133648 0.51776883 1.1714598    Olig2       7       2
#> 68:   103 0.095480764 0.58771655 1.0561925     Gng4       7       7
#> 69:   104 0.096534827 0.58849116 1.1651781     Myrf       7       3
#> 70:   111 0.112835941 0.64448637 0.9399060   Pbxip1       7      10
#> 71:   113 0.125182233 0.70234987 1.2522299   Pou3f1       7       1
#> 72:   117 0.133698127 0.72448387 0.9716501     Aspa       7       9
#> 73:   127 0.179546145 0.89631698 1.0321280     Lmo1       7       8
#>       Top     p.value        FDR     logFC    feats cluster ranking