Identify marker feats for all clusters in a one vs all manner based on scran's implementation of findMarkers.

findScranMarkers_one_vs_all(
  gobject,
  spat_unit = NULL,
  feat_type = NULL,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  pval = 0.01,
  logFC = 0.5,
  min_feats = 10,
  min_genes = NULL,
  verbose = TRUE,
  ...
)

Arguments

gobject

giotto object

spat_unit

spatial unit

feat_type

feature type

expression_values

feat expression values to use

cluster_column

clusters to use

subset_clusters

subset of clusters to use

pval

filter on minimal p-value

logFC

filter on logFC

min_feats

minimum feats to keep per cluster, overrides pval and logFC

min_genes

deprecated, use min_feats

verbose

be verbose

...

additional parameters for the findMarkers function in scran

Value

data.table with marker feats

See also

Examples

g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#>  active environment : '/usr/bin/python3'
#>  python version : 3.12

findScranMarkers_one_vs_all(g, cluster_column = "leiden_clus")
#> using 'Scran' to detect marker feats. If used in published
#>       research, please cite: Lun ATL, McCarthy DJ, Marioni JC (2016).
#>       'A step-by-step workflow for low-level analysis of single-cell RNA-seq
#>       data with Bioconductor.'
#>       F1000Res., 5, 2122. doi: 10.12688/f1000research.9501.2. 
#> start with cluster  1start with cluster  2start with cluster  3start with cluster  4start with cluster  5start with cluster  6start with cluster  7
#>        Top      p.value       FDR      logFC   feats cluster ranking
#>      <int>        <num>     <num>      <num>  <char>  <char>   <num>
#>   1:     1 0.0003543270 0.1954678  0.4994571  Arpp19       1       3
#>   2:     2 0.0006166177 0.1954678 -0.1260320 Emilin1       1     531
#>   3:     3 0.0009440501 0.1995093 -0.3386237    Sod3       1     632
#>   4:     4 0.0029328557 0.4458839  0.5955190   Pde1a       1       1
#>   5:     5 0.0035164343 0.4458839  0.5293216  Ipcef1       1       2
#>  ---                                                                
#> 188:   104 0.0965348270 0.5884912  1.1651781    Myrf       7       3
#> 189:   111 0.1128359409 0.6444864  0.9399060  Pbxip1       7      10
#> 190:   113 0.1251822332 0.7023499  1.2522299  Pou3f1       7       1
#> 191:   117 0.1336981269 0.7244839  0.9716501    Aspa       7       9
#> 192:   127 0.1795461454 0.8963170  1.0321280    Lmo1       7       8