Creates data.table with pairwise correlation scores between each cluster.
data.table
Creates data.table with pairwise correlation scores between each cluster and the group size (# of cells) for each cluster. This information can be used together with mergeClusters to combine very similar or small clusters into bigger clusters.
g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#> active environment : '/usr/bin/python3'
#> python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#> "/usr/bin/python3"
getClusterSimilarity(g, cluster_column = "leiden_clus")
#> Key: <group2>
#> group2 group1 value unified_group group1_size group2_size
#> <char> <char> <num> <char> <int> <int>
#> 1: 1 1 1.0000000 1--1 162 162
#> 2: 1 2 0.8422383 1--2 122 162
#> 3: 1 3 0.8669756 1--3 108 162
#> 4: 1 4 0.5442705 1--4 93 162
#> 5: 1 5 0.6824345 1--5 84 162
#> 6: 1 6 0.7264226 1--6 45 162
#> 7: 1 7 0.5972392 1--7 10 162
#> 8: 2 2 1.0000000 2--2 122 122
#> 9: 2 3 0.7978084 2--3 108 122
#> 10: 2 4 0.5336978 2--4 93 122
#> 11: 2 5 0.6414036 2--5 84 122
#> 12: 2 6 0.6556486 2--6 45 122
#> 13: 2 7 0.4073051 2--7 10 122
#> 14: 3 3 1.0000000 3--3 108 108
#> 15: 3 4 0.4044085 3--4 93 108
#> 16: 3 5 0.4514877 3--5 84 108
#> 17: 3 6 0.4897613 3--6 45 108
#> 18: 3 7 0.3378678 3--7 10 108
#> 19: 4 4 1.0000000 4--4 93 93
#> 20: 4 5 0.5806246 4--5 84 93
#> 21: 4 6 0.7913727 4--6 45 93
#> 22: 4 7 0.4013357 4--7 10 93
#> 23: 5 5 1.0000000 5--5 84 84
#> 24: 5 6 0.8740586 5--6 45 84
#> 25: 5 7 0.5595658 5--7 10 84
#> 26: 6 6 1.0000000 6--6 45 45
#> 27: 6 7 0.6808065 6--7 10 45
#> 28: 7 7 1.0000000 7--7 10 10
#> group2 group1 value unified_group group1_size group2_size