Perform data transformations, or set up chains of transformations and
operations to be applied to expression type data in the giotto
object.
processExpression(
gobject,
param,
name = NULL,
expression_values = "raw",
spat_unit = NULL,
feat_type = NULL,
return_gobject = TRUE,
...
)
giotto
object
S4 parameter class defining the transform operation and params affecting it. Can also be a list of several of these objects, acting as a pipeline.
character (optional). Object name
to assign to the output. Default name
changes based on param
input:
when param
is list
or scaleParam
: name = "scaled"
when param
is normParam
: name = "normalized"
when param
is adjustParam
: name = "custom"
when param
is osmFISHNormParam
: name = "custom"
when param
is pearsonResidNormParam
: name = "scaled"
character. Name of matrix to use
character (optional). spatial unit to use
character (optional). feature type to use
logical (optional). Whether to return the gobject
.
When FALSE, the exprObj
is returned instead.
additional params to pass
A giotto
object when return_gobject = TRUE
. Otherwise, an
exprObj
process_param for processing operations that can be performed
processData()
for the lower level generic handling these operations
g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#> active environment : '/usr/bin/python3'
#> python version : 3.12
# single operation
processExpression(g, normParam("library"), name = "library")
#> Setting expression [cell][rna] library
#> An object of class giotto
#> >Active spat_unit: cell
#> >Active feat_type: rna
#> dimensions : 634, 624 (features, cells)
#> [SUBCELLULAR INFO]
#> polygons : cell
#> [AGGREGATE INFO]
#> expression -----------------------
#> [cell][rna] raw normalized scaled library
#> spatial locations ----------------
#> [cell] raw
#> spatial networks -----------------
#> [cell] Delaunay_network spatial_network
#> spatial enrichments --------------
#> [cell][rna] cluster_metagene DWLS
#> dim reduction --------------------
#> [cell][rna] pca custom_pca umap custom_umap tsne
#> nearest neighbor networks --------
#> [cell][rna] sNN.pca custom_NN
#> attached images ------------------
#> images : alignment image
#>
#>
#> Use objHistory() to see steps and params used
# single operation with changed parameter
lib <- normParam("library")
lib$scalefactor = 1000
processExpression(g, lib, name = "library2")
#> Setting expression [cell][rna] library2
#> An object of class giotto
#> >Active spat_unit: cell
#> >Active feat_type: rna
#> dimensions : 634, 624 (features, cells)
#> [SUBCELLULAR INFO]
#> polygons : cell
#> [AGGREGATE INFO]
#> expression -----------------------
#> [cell][rna] raw normalized scaled library2
#> spatial locations ----------------
#> [cell] raw
#> spatial networks -----------------
#> [cell] Delaunay_network spatial_network
#> spatial enrichments --------------
#> [cell][rna] cluster_metagene DWLS
#> dim reduction --------------------
#> [cell][rna] pca custom_pca umap custom_umap tsne
#> nearest neighbor networks --------
#> [cell][rna] sNN.pca custom_NN
#> attached images ------------------
#> images : alignment image
#>
#>
#> Use objHistory() to see steps and params used
# return the exprObj instead
processExpression(g, lib, name = "library2", return_gobject = FALSE)
#> An object of class exprObj : "library2"
#> spat_unit : "cell"
#> feat_type : "rna"
#> provenance: cell
#>
#> contains:
#> 634 x 624 sparse Matrix of class "dgCMatrix"
#>
#> Gna12 2.12766 2.372479 1.37931 1.890359 8.797654 0.7127584 2.747253 4.1459370 6.396588 . .
#> Ccnd2 . 1.186240 1.37931 . . 0.7127584 . 0.8291874 2.132196 . .
#> Btbd17 . 1.186240 1.37931 1.890359 . . 1.831502 . . . .
#>
#> Gna12 8.396306 5.303030 ......
#> Ccnd2 . 2.272727 ......
#> Btbd17 . . ......
#>
#> ........suppressing 611 columns and 628 rows in show(); maybe adjust options(max.print=, width=)
#>
#> Gm19935 . 1.18624 . . . . . . . . 1.265823 . . ......
#> 9630013A20Rik . . . . . . . . . . 1.265823 . . ......
#> 2900040C04Rik 2.12766 . . . . . . . . 1.703578 . . . ......
#>
#> First four colnames:
#> AAAGGGATGTAGCAAG-1 AAATGGCATGTCTTGT-1
#> AAATGGTCAATGTGCC-1 AAATTAACGGGTAGCT-1
# chained operation (this is the Giotto standard normalization)
processExpression(g,
list(
normParam("library"),
normParam("log"),
scaleParam("zscore", MARGIN = 1),
scaleParam("zscore", MARGIN = 2)
),
name = "scaled2"
)
#> Setting expression [cell][rna] scaled2
#> An object of class giotto
#> >Active spat_unit: cell
#> >Active feat_type: rna
#> dimensions : 634, 624 (features, cells)
#> [SUBCELLULAR INFO]
#> polygons : cell
#> [AGGREGATE INFO]
#> expression -----------------------
#> [cell][rna] raw normalized scaled scaled2
#> spatial locations ----------------
#> [cell] raw
#> spatial networks -----------------
#> [cell] Delaunay_network spatial_network
#> spatial enrichments --------------
#> [cell][rna] cluster_metagene DWLS
#> dim reduction --------------------
#> [cell][rna] pca custom_pca umap custom_umap tsne
#> nearest neighbor networks --------
#> [cell][rna] sNN.pca custom_NN
#> attached images ------------------
#> images : alignment image
#>
#>
#> Use objHistory() to see steps and params used