Create a simulated spatial pattern for one selected gnee
giotto object
name of spatial pattern
cell ids that make up the spatial pattern
selected gene
probability for a high expressing gene value to be part of the spatial pattern
direction of gradient
show the discrete spatial pattern
2 color vector for the spatial pattern
additional parameters for (re-)normalizing
Reprocessed Giotto object for which one gene has a forced spatial pattern
g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#> active environment : '/usr/bin/python3'
#> python version : 3.12
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#> "/usr/bin/python3"
simulateOneGenePatternGiottoObject(
gobject = g,
pattern_cell_ids = c(
"AAAGGGATGTAGCAAG-1", "TCAAACAACCGCGTCG-1",
"ACGATCATACATAGAG-1", "TATGCTCCCTACTTAC-1"
),
gene_name = "Gna12"
)
#> > raw already exists and will be replaced with new values
#> Setting expression [cell][rna] raw
#> first scale feats and then cells
#> > normalized already exists and will be replaced with new values
#> Setting expression [cell][rna] normalized
#> > scaled already exists and will be replaced with new values
#> Setting expression [cell][rna] scaled
#> calculating statistics for "normalized" expression
#> feat statistics has already been applied once; overwriting
#> cells statistics has already been applied once; overwriting
#> An object of class giotto
#> >Active spat_unit: cell
#> >Active feat_type: rna
#> dimensions : 634, 624 (features, cells)
#> [SUBCELLULAR INFO]
#> polygons : cell
#> [AGGREGATE INFO]
#> expression -----------------------
#> [cell][rna] raw normalized scaled
#> spatial locations ----------------
#> [cell] raw
#> spatial networks -----------------
#> [cell] Delaunay_network spatial_network
#> spatial enrichments --------------
#> [cell][rna] cluster_metagene DWLS
#> dim reduction --------------------
#> [cell][rna] pca custom_pca umap custom_umap tsne
#> nearest neighbor networks --------
#> [cell][rna] sNN.pca custom_NN
#> attached images ------------------
#> images : alignment image
#>
#>
#> Use objHistory() to see steps and params used