This vignette demonstrates how to use a dbMatrix
within a Giotto Object. The dbMatrix
is a database-backed
matrix that can be used to store large matrices in a database. This
allows for efficient storage and retrieval of large matrices and enables
efficiently working with larger-than-memory cell count matrices.
# Ensure Giotto Suite is installed.
if(!"Giotto" %in% installed.packages()) {
devtools::install_github("drieslab/Giotto")
}
# Ensure GiottoData, a small, helper module for tutorials, is installed.
if(!"GiottoData" %in% installed.packages()) {
devtools::install_github("drieslab/GiottoData")
}
library(Giotto)
library(GiottoData)
# Ensure the Python environment for Giotto has been installed.
genv_exists = checkGiottoEnvironment()
if(!genv_exists){
# The following command need only be run once to install the Giotto environment.
installGiottoEnvironment()
}
dbMatrix
# Get test dataset from Giotto Data package
visium = GiottoData::loadGiottoMini(dataset = "visium")
# Extract the cell expression matrix as a test dataset
dgc = getExpression(visium, output = "matrix")
# Create a DBI connection object
con = DBI::dbConnect(duckb::duckdb(), ":memory:")
# Create a dbSparseMatrix using the dbMatrix constructor function
dbsm = dbMatrix::dbMatrix(value = dgc,
con = con,
name = 'dgc',
class = "dbSparseMatrix",
overwrite = TRUE)
# Create Giotto exprObj with the dbMatrix
expObj_db = createExprObj(expression_data = dbsm,
expression_matrix_class = 'dbSparseMatrix',
name = 'raw')
# Create the Giotto object consisting of only the cell count matrix
gobject_db = createGiottoObject(expression = expObj_db)
dbMatrix
# Perform filtering
gobject_db_filtered = filterGiotto(gobject_db, spat_unit = "cell",
feat_type = "rna",
expression_values = "raw")
# Perform library normalization and scaling
gobject_db_filtered = normalizeGiotto(gobject = gobject_db_filtered,
spat_unit = 'cell',
feat_type = 'rna',
expression_values = 'raw',
library_size_norm = FALSE,
log_norm = FALSE,
scale_feats = TRUE,
scale_cells = TRUE)