Compute cell-cell interaction enrichment for spots (observed vs expected)

cellProximityEnrichmentSpots(
  gobject,
  spat_unit = NULL,
  feat_type = NULL,
  spatial_network_name = "spatial_network",
  cluster_column = "cell_ID",
  cells_in_spot = 1,
  number_of_simulations = 100,
  adjust_method = c("none", "fdr", "bonferroni", "BH", "holm", "hochberg", "hommel",
    "BY"),
  set_seed = TRUE,
  seed_number = 1234,
  verbose = FALSE
)

Arguments

gobject

giotto object

spat_unit

spatial unit (e.g. 'cell')

feat_type

feature type (e.g. 'rna')

spatial_network_name

name of spatial network to use

cluster_column

name of column to use for clusters

cells_in_spot

cell number in each spot

number_of_simulations

number of simulations to create expected observations

adjust_method

method to adjust p.values (e.g. "none", "fdr", "bonferroni","BH","holm", "hochberg", "hommel","BY")

set_seed

use of seed. Default = TRUE

seed_number

seed number to use. Default = 1234

verbose

be verbose

Value

List of cell Proximity scores (CPscores) in data.table format. The first data.table (raw_sim_table) shows the raw observations of both the original and simulated networks. The second data.table (enrichm_res) shows the enrichment results.

Details

Spatial proximity enrichment or depletion between pairs of cell types is calculated by calculating the observed over the expected frequency of cell-cell proximity interactions. The expected frequency is the average frequency calculated from a number of spatial network simulations. Each individual simulation is obtained by reshuffling the cell type labels of each node (spot) in the spatial network.

Examples

g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#>  active environment : '/usr/bin/python3'
#>  python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#>  "/usr/bin/python3"
x <- findMarkers_one_vs_all(g,
    cluster_column = "leiden_clus", min_feats = 20
)
#> using 'Scran' to detect marker feats. If used in published
#>       research, please cite: Lun ATL, McCarthy DJ, Marioni JC (2016).
#>       'A step-by-step workflow for low-level analysis of single-cell RNA-seq
#>       data with Bioconductor.'
#>       F1000Res., 5, 2122. doi: 10.12688/f1000research.9501.2. 
#> start with cluster  1start with cluster  2start with cluster  3start with cluster  4start with cluster  5start with cluster  6start with cluster  7
sign_gene <- x$feats

sign_matrix <- matrix(rnorm(length(sign_gene) * 7, mean = 10),
    nrow = length(sign_gene)
)
rownames(sign_matrix) <- sign_gene
colnames(sign_matrix) <- paste0("celltype_", unique(x$cluster))

g <- runDWLSDeconv(gobject = g, sign_matrix = sign_matrix)
#> Error: package 'quadprog' is not yet installed
#> 
#>  To install:
#> install.packages(c("quadprog"))

cellProximityEnrichmentSpots(gobject = g)
#> $raw_sim_table
#> Index: <unified_int>
#>                          unified_int type_int          V1    external
#>                               <char>   <char>       <num>       <num>
#>    1:         Astrocytes--Astrocytes     homo   77.097645   77.097645
#>    2:            Astrocytes--Neurons   hetero  368.902614  342.075257
#>    3:             Astrocytes--Oligos   hetero  258.428639  238.459464
#>    4:     Astrocytes--PeripheralGlia   hetero   15.075425   13.983535
#>    5:               Neurons--Neurons     homo 1572.742242 1572.742242
#>   ---                                                                
#> 1006:                Neurons--Oligos   hetero 1159.793815 1158.830010
#> 1007:        Neurons--PeripheralGlia   hetero   53.120837   53.097420
#> 1008:                 Oligos--Oligos     homo  291.758384  291.758384
#> 1009:         Oligos--PeripheralGlia   hetero   24.678681   24.664819
#> 1010: PeripheralGlia--PeripheralGlia     homo    1.249734    1.249734
#>          internal        orig    round
#>             <num>      <char>   <char>
#>    1:  0.00000000    original original
#>    2: 26.82735755    original original
#>    3: 19.96917482    original original
#>    4:  1.09188982    original original
#>    5:  0.00000000    original original
#>   ---                                 
#> 1006:  0.96380446 simulations   sim100
#> 1007:  0.02341696 simulations   sim100
#> 1008:  0.00000000 simulations   sim100
#> 1009:  0.01386250 simulations   sim100
#> 1010:  0.00000000 simulations   sim100
#> 
#> $enrichm_res
#>                        unified_int type_int    original simulations    enrichm
#>                             <fctr>   <char>       <num>       <num>      <num>
#>  1:         Astrocytes--Astrocytes     homo   77.097645   43.908466  0.7982916
#>  2: PeripheralGlia--PeripheralGlia     homo    2.741436    1.238117  0.7413068
#>  3:     Astrocytes--PeripheralGlia   hetero   15.075425    9.601463  0.6005935
#>  4:                 Oligos--Oligos     homo  436.276740  296.264218  0.5568008
#>  5:         Oligos--PeripheralGlia   hetero   34.552973   25.350889  0.4321185
#>  6:             Astrocytes--Oligos   hetero  258.428639  208.237077  0.3101992
#>  7:               Neurons--Neurons     homo 1572.742242 1352.935773  0.2170400
#>  8:            Astrocytes--Neurons   hetero  368.902614  439.918806 -0.2533675
#>  9:        Neurons--PeripheralGlia   hetero   41.364766   52.414225 -0.3343591
#> 10:                Neurons--Oligos   hetero  900.814538 1153.717050 -0.3566367
#>     p_higher_orig p_lower_orig p.adj_higher p.adj_lower   PI_value int_ranking
#>             <num>        <num>        <num>       <num>      <num>       <int>
#>  1:             0            1            0           1  1.5965832           1
#>  2:             0            1            0           1  1.4826135           2
#>  3:             0            1            0           1  1.2011870           3
#>  4:             0            1            0           1  1.1136016           4
#>  5:             0            1            0           1  0.8642371           5
#>  6:             0            1            0           1  0.6203985           6
#>  7:             0            1            0           1  0.4340799           7
#>  8:             1            0            1           0 -0.5067350           8
#>  9:             1            0            1           0 -0.6687182           9
#> 10:             1            0            1           0 -0.7132734          10
#>