Identify marker feats for all clusters in a one vs all manner.

findMarkers_one_vs_all(
  gobject,
  feat_type = NULL,
  spat_unit = NULL,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  method = c("scran", "gini", "mast"),
  pval = 0.01,
  logFC = 0.5,
  min_feats = 10,
  min_genes = NULL,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank_score = 1,
  adjust_columns = NULL,
  verbose = TRUE,
  ...
)

Arguments

gobject

giotto object

feat_type

feature type

spat_unit

spatial unit

expression_values

feat expression values to use

cluster_column

clusters to use

subset_clusters

selection of clusters to compare

method

method to use to detect differentially expressed feats

pval

scran & mast: filter on minimal p-value

logFC

scan & mast: filter on logFC

min_feats

minimum feats to keep per cluster, overrides pval and logFC

min_genes

deprecated, use min_feats

min_expr_gini_score

gini: filter on minimum gini coefficient for expression

min_det_gini_score

gini: filter minimum gini coefficient for detection

detection_threshold

gini: detection threshold for feat expression

rank_score

gini: rank scores to include

adjust_columns

mast: column in pDataDT to adjust for (e.g. detection rate)

verbose

be verbose

...

additional parameters for the findMarkers function in scran or zlm function in MAST

Value

data.table with marker feats

Details

Wrapper for all one vs all functions to detect marker feats for clusters.

Examples

g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#>  active environment : '/usr/bin/python3'
#>  python version : 3.12

findMarkers_one_vs_all(g, cluster_column = "leiden_clus")
#> using 'Scran' to detect marker feats. If used in published
#>       research, please cite: Lun ATL, McCarthy DJ, Marioni JC (2016).
#>       'A step-by-step workflow for low-level analysis of single-cell RNA-seq
#>       data with Bioconductor.'
#>       F1000Res., 5, 2122. doi: 10.12688/f1000research.9501.2. 
#> start with cluster  1start with cluster  2start with cluster  3start with cluster  4start with cluster  5start with cluster  6start with cluster  7
#>        Top      p.value       FDR      logFC   feats cluster ranking
#>      <int>        <num>     <num>      <num>  <char>  <char>   <num>
#>   1:     1 0.0003543270 0.1954678  0.4994571  Arpp19       1       3
#>   2:     2 0.0006166177 0.1954678 -0.1260320 Emilin1       1     531
#>   3:     3 0.0009440501 0.1995093 -0.3386237    Sod3       1     632
#>   4:     4 0.0029328557 0.4458839  0.5955190   Pde1a       1       1
#>   5:     5 0.0035164343 0.4458839  0.5293216  Ipcef1       1       2
#>  ---                                                                
#> 188:   104 0.0965348270 0.5884912  1.1651781    Myrf       7       3
#> 189:   111 0.1128359409 0.6444864  0.9399060  Pbxip1       7      10
#> 190:   113 0.1251822332 0.7023499  1.2522299  Pou3f1       7       1
#> 191:   117 0.1336981269 0.7244839  0.9716501    Aspa       7       9
#> 192:   127 0.1795461454 0.8963170  1.0321280    Lmo1       7       8