cluster cells using a variety of different methods
clusterCells(
gobject,
cluster_method = c("leiden", "louvain_community", "louvain_multinet", "randomwalk",
"sNNclust", "kmeans", "hierarchical"),
name = "cluster_name",
nn_network_to_use = "sNN",
network_name = "sNN.pca",
pyth_leid_resolution = 1,
pyth_leid_weight_col = "weight",
pyth_leid_part_type = c("RBConfigurationVertexPartition", "ModularityVertexPartition"),
pyth_leid_init_memb = NULL,
pyth_leid_iterations = 1000,
pyth_louv_resolution = 1,
pyth_louv_weight_col = NULL,
python_louv_random = FALSE,
python_path = NULL,
louvain_gamma = 1,
louvain_omega = 1,
walk_steps = 4,
walk_clusters = 10,
walk_weights = NA,
sNNclust_k = 20,
sNNclust_eps = 4,
sNNclust_minPts = 16,
borderPoints = TRUE,
expression_values = c("normalized", "scaled", "custom"),
feats_to_use = NULL,
dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
dim_reduction_name = "pca",
dimensions_to_use = 1:10,
distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
"manhattan", "canberra", "binary", "minkowski"),
km_centers = 10,
km_iter_max = 100,
km_nstart = 1000,
km_algorithm = "Hartigan-Wong",
hc_agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
"mcquitty", "median", "centroid"),
hc_k = 10,
hc_h = NULL,
return_gobject = TRUE,
set_seed = TRUE,
seed_number = 1234
)
giotto object
community cluster method to use
name for new clustering result
type of NN network to use (kNN vs sNN)
name of NN network to use
resolution for leiden
column to use for weights
partition type to use
initial membership
number of iterations
resolution for louvain
python louvain param: weight column
python louvain param: random
specify specific path to python if required
louvain param: gamma or resolution
louvain param: omega
randomwalk: number of steps
randomwalk: number of clusters
randomwalk: weight column
SNNclust: k neighbors to use
SNNclust: epsilon
SNNclust: min points
SNNclust: border points
expression values to use
features to use in clustering,
dimension reduction to use
name of reduction 'pca',
dimensions to use
distance method
kmeans centers
kmeans iterations
kmeans random starting points
kmeans algorithm
hierarchical clustering method
hierachical number of clusters
hierarchical tree cutoff
boolean: return giotto object (default = TRUE)
set seed
number for seed
giotto object with new clusters appended to cell metadata
Wrapper for the different clustering methods.
g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#> active environment : '/usr/bin/python3'
#> python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#> "/usr/bin/python3"
clusterCells(g)
#> Error in py_run_file_impl(file, local, convert): ModuleNotFoundError: No module named 'igraph'
#> Run `reticulate::py_last_error()` for details.