Identify marker feats for all clusters in a one vs all manner based on gini detection and expression scores.

findGiniMarkers_one_vs_all(
  gobject,
  feat_type = NULL,
  spat_unit = NULL,
  expression_values = c("normalized", "scaled", "custom"),
  cluster_column,
  subset_clusters = NULL,
  min_expr_gini_score = 0.5,
  min_det_gini_score = 0.5,
  detection_threshold = 0,
  rank_score = 1,
  min_feats = 4,
  min_genes = NULL,
  verbose = TRUE
)

Arguments

gobject

giotto object

feat_type

feature type

spat_unit

spatial unit

expression_values

feat expression values to use

cluster_column

clusters to use

subset_clusters

selection of clusters to compare

min_expr_gini_score

filter on minimum gini coefficient on expression

min_det_gini_score

filter on minimum gini coefficient on detection

detection_threshold

detection threshold for feat expression

rank_score

rank scores for both detection and expression to include

min_feats

minimum number of top feats to return

min_genes

deprecated, use min_feats

verbose

be verbose

Value

data.table with marker feats

See also

Examples

g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#>  active environment : '/usr/bin/python3'
#>  python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#>  "/usr/bin/python3"

findGiniMarkers_one_vs_all(g, cluster_column = "leiden_clus")
#> start with cluster  1start with cluster  2start with cluster  3start with cluster  4start with cluster  5start with cluster  6start with cluster  7
#>         feats cluster expression expression_gini  detection detection_gini
#>        <char>  <char>      <num>           <num>      <num>          <num>
#>    1: Slc17a8       1  0.2878205    0.2150880844 0.08024691    0.198534543
#>    2:    Ncf2       1  0.2851795    0.1413891924 0.09876543    0.146040902
#>    3:   Cdhr4       1  0.1245718    0.1221149303 0.04320988    0.105617978
#>    4: Slitrk6       1  0.4873898    0.1096027412 0.16049383    0.117139334
#>    5:  Ipcef1       1  1.9056033    0.0806429249 0.51851852    0.075086690
#>   ---                                                                     
#> 1612:  Baiap2       7  3.2529838    0.0030647011 0.70000000    0.008125429
#> 1613:  Vstm2a       7  2.1500628    0.0110355110 0.60000000    0.001758182
#> 1614: Ppp1r1a       7  4.3554185    0.0005621340 0.90000000    0.002878733
#> 1615:    Lmo3       7  2.5245086    0.0011044706 0.60000000    0.011664899
#> 1616:   Epha5       7  2.2749732    0.0004963358 0.60000000    0.001758182
#>       expression_rank detection_rank   comb_score comb_rank
#>                 <num>          <num>        <num>     <int>
#>    1:             1.0            1.0 4.270241e-02         1
#>    2:             1.0            1.0 2.064861e-02         2
#>    3:             1.0            1.0 1.289753e-02         3
#>    4:             1.0            1.0 1.283879e-02         4
#>    5:             1.0            1.0 6.055210e-03        12
#>   ---                                                      
#> 1612:             0.1            0.1 2.490201e-07       629
#> 1613:             0.1            0.1 1.940244e-07       631
#> 1614:             1.0            0.1 1.618234e-07       632
#> 1615:             0.1            0.1 1.288354e-07       633
#> 1616:             0.1            0.1 8.726488e-09       634