run UMAP on subset and project on the rest

runUMAPprojection(
  gobject,
  feat_type = NULL,
  spat_unit = NULL,
  expression_values = c("normalized", "scaled", "custom"),
  reduction = c("cells", "feats"),
  dim_reduction_to_use = "pca",
  dim_reduction_name = NULL,
  dimensions_to_use = 1:10,
  random_subset = 500,
  name = NULL,
  feats_to_use = NULL,
  return_gobject = TRUE,
  n_neighbors = 40,
  n_components = 2,
  n_epochs = 400,
  min_dist = 0.01,
  n_threads = NA,
  spread = 5,
  set_seed = TRUE,
  seed_number = 1234,
  verbose = TRUE,
  toplevel_params = deprecated(),
  toplevel = 1L,
  ...
)

Arguments

gobject

giotto object

feat_type

feature type

spat_unit

spatial unit

expression_values

expression values to use

reduction

'cells' or 'feats'

dim_reduction_to_use

use another dimension reduction set as input

dim_reduction_name

name of dimension reduction set to use

dimensions_to_use

number of dimensions to use as input

random_subset

random subset to perform UMAP on

name

arbitrary name for UMAP run

feats_to_use

if dim_reduction_to_use = NULL, which features to use

return_gobject

boolean: return giotto object (default = TRUE)

n_neighbors

UMAP param: number of neighbors

n_components

UMAP param: number of components

n_epochs

UMAP param: number of epochs

min_dist

UMAP param: minimum distance

n_threads

UMAP param: threads/cores to use

spread

UMAP param: spread

set_seed

use of seed

seed_number

seed number to use

verbose

verbosity of function

toplevel_params

deprecated

toplevel

relative stackframe where call was made from

...

additional UMAP parameters

Value

giotto object with updated UMAP dimension reduction

Details

See umap for more information about these and other parameters.

  • Input for UMAP dimension reduction can be another dimension reduction (default = 'pca')

  • To use gene expression as input set dim_reduction_to_use = NULL

  • If dim_reduction_to_use = NULL, feats_to_use can be used to select a column name of highly variable genes (see calculateHVF) or simply provide a vector of genes

  • multiple UMAP results can be stored by changing the name of the analysis

Examples

g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#>  active environment : '/usr/bin/python3'
#>  python version : 3.12
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#>  "/usr/bin/python3"

runUMAPprojection(g)
#> Setting dimension reduction [cell][rna] umap.projection
#> An object of class giotto 
#> >Active spat_unit:  cell 
#> >Active feat_type:  rna 
#> dimensions    : 634, 624 (features, cells)
#> [SUBCELLULAR INFO]
#> polygons      : cell 
#> [AGGREGATE INFO]
#> expression -----------------------
#>   [cell][rna] raw normalized scaled
#> spatial locations ----------------
#>   [cell] raw
#> spatial networks -----------------
#>   [cell] Delaunay_network spatial_network
#> spatial enrichments --------------
#>   [cell][rna] cluster_metagene DWLS
#> dim reduction --------------------
#>   [cell][rna] pca custom_pca umap custom_umap umap.projection tsne
#> nearest neighbor networks --------
#>   [cell][rna] sNN.pca custom_NN
#> attached images ------------------
#> images      : alignment image 
#> 
#> 
#> Use objHistory() to see steps and params used