run tSNE
runtSNE(
gobject,
spat_unit = NULL,
feat_type = NULL,
expression_values = c("normalized", "scaled", "custom"),
reduction = c("cells", "feats"),
dim_reduction_to_use = "pca",
dim_reduction_name = NULL,
dimensions_to_use = 1:10,
name = NULL,
feats_to_use = NULL,
return_gobject = TRUE,
dims = 2,
perplexity = 30,
theta = 0.5,
do_PCA_first = FALSE,
set_seed = TRUE,
seed_number = 1234,
verbose = TRUE,
toplevel = 1L,
...
)
giotto object
spatial unit
feature type
expression values to use
cells or feats
use another dimension reduction set as input
name of dimension reduction set to use
number of dimensions to use as input
arbitrary name for tSNE run
if dim_reduction_to_use = NULL, which features to use
boolean: return giotto object (default = TRUE)
tSNE param: number of dimensions to return
tSNE param: perplexity
tSNE param: theta
tSNE param: do PCA before tSNE (default = FALSE)
use of seed
seed number to use
verbosity of the function
relative stackframe where call was made from
additional tSNE parameters
giotto object with updated tSNE dimension reduction
See Rtsne
for more information about these and
other parameters.
Input for tSNE dimension reduction can be another dimension reduction (default = 'pca')
To use gene expression as input set dim_reduction_to_use = NULL
If dim_reduction_to_use = NULL, feats_to_use can be used to select
a column name of highly variable genes
(see calculateHVF
) or simply provide a vector of genes
multiple tSNE results can be stored by changing the name of the analysis
g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#> active environment : '/usr/bin/python3'
#> python version : 3.10
#> checking default envname 'giotto_env'
#> a system default python environment was found
#> Using python path:
#> "/usr/bin/python3"
runtSNE(g)
#> > tsne already exists and will be replaced with
#> new dimension reduction object
#> Setting dimension reduction [cell][rna] tsne
#> An object of class giotto
#> >Active spat_unit: cell
#> >Active feat_type: rna
#> dimensions : 634, 624 (features, cells)
#> [SUBCELLULAR INFO]
#> polygons : cell
#> [AGGREGATE INFO]
#> expression -----------------------
#> [cell][rna] raw normalized scaled
#> spatial locations ----------------
#> [cell] raw
#> spatial networks -----------------
#> [cell] Delaunay_network spatial_network
#> spatial enrichments --------------
#> [cell][rna] cluster_metagene DWLS
#> dim reduction --------------------
#> [cell][rna] pca custom_pca umap custom_umap tsne
#> nearest neighbor networks --------
#> [cell][rna] sNN.pca custom_NN
#> attached images ------------------
#> images : alignment image
#>
#>
#> Use objHistory() to see steps and params used