Use NMF to perform dimension reduction.
runNMF(
gobject,
spat_unit = NULL,
feat_type = NULL,
expression_values = c("normalized", "scaled", "custom"),
reduction = c("cells", "feats"),
name = NULL,
feats_to_use = "hvf",
return_gobject = TRUE,
scale_unit = TRUE,
k = 20,
method = c("rcppml"),
rev = FALSE,
set_seed = TRUE,
seed_number = 1234,
verbose = TRUE,
toplevel = 1L,
...
)
giotto object
spatial unit (e.g. "cell")
feature type (e.g. "rna", "dna", "protein")
expression values to use
"cells" or "feats"
arbitrary name for NMF run
subset of features to use for NMF
boolean: return giotto object (default = TRUE)
scale features before NMF (default = TRUE)
NMF rank (number of components to decompose into). Default is 20
which implementation to use (only rcppml right now)
do a reverse NMF
use of seed
seed number to use
verbosity of the function
relative stackframe where call was made
additional parameters for NMF (see details)
giotto object with updated NMF dimension reduction
See nmf
for more information about other parameters.
g <- GiottoData::loadGiottoMini("visium")
#> 1. read Giotto object
#> 2. read Giotto feature information
#> 3. read Giotto spatial information
#> 3.1 read Giotto spatial shape information
#> 3.2 read Giotto spatial centroid information
#> 3.3 read Giotto spatial overlap information
#> 4. read Giotto image information
#> python already initialized in this session
#> active environment : '/usr/bin/python3'
#> python version : 3.12
x <- runNMF(g, k = 20)
#> "hvf" column was found in the feats metadata information and will be
#> used to select highly variable features
#> [Running RcppML NMF]. This citation shown once per session:
#> Zachary J. DeBruine, Karsten Melcher, Timothy J. Triche Jr
#> Fast and robust non-negative matrix factorization for single-cell experiments
#> bioRxiv 2021.09.01.458620.
#> https://doi.org/10.1101/2021.09.01.458620
#>
#> iter | tol
#> ---------------
#> 1 | 8.68e-01
#> 2 | 1.06e-01
#> 3 | 4.20e-02
#> 4 | 2.40e-02
#> 5 | 1.50e-02
#> 6 | 1.07e-02
#> 7 | 8.13e-03
#> 8 | 5.39e-03
#> 9 | 3.11e-03
#> 10 | 2.04e-03
#> 11 | 1.53e-03
#> 12 | 1.18e-03
#> 13 | 9.46e-04
#> 14 | 7.65e-04
#> 15 | 6.38e-04
#> 16 | 5.10e-04
#> 17 | 4.68e-04
#> 18 | 4.30e-04
#> 19 | 3.94e-04
#> 20 | 3.51e-04
#> 21 | 3.07e-04
#> 22 | 2.39e-04
#> 23 | 1.90e-04
#> 24 | 1.70e-04
#> 25 | 1.53e-04
#> 26 | 1.35e-04
#> 27 | 1.21e-04
#> 28 | 1.05e-04
#> 29 | 9.11e-05
#> Setting dimension reduction [cell][rna] nmf
x <- runUMAP(x,
dim_reduction_to_use = "nmf",
dimensions_to_use = 1:20,
name = "nmf_umap"
)
#> Setting dimension reduction [cell][rna] nmf_umap
x <- createNearestNetwork(x,
dim_reduction_to_use = "nmf",
dim_reduction_name = "nmf",
dimensions_to_use = 1:20
)
x <- doLeidenCluster(x, name = "nmf_leiden", network_name = "sNN.nmf")
#> Error in py_run_file_impl(file, local, convert): ModuleNotFoundError: No module named 'igraph'
#> Run `reticulate::py_last_error()` for details.
plotUMAP(x, dim_reduction_name = "nmf_umap", cell_color = "nmf_leiden")
#> Error: dimPlot2D()
#> nmf_leiden is not a color or a column name
spatPlot2D(x, cell_color = "nmf_leiden")
#> Error: spatPlot2D()
#> nmf_leiden is not a color or a column name