# Ensure Giotto Suite is installed.
if(!"Giotto" %in% installed.packages()) {
pak::pkg_install("drieslab/Giotto")
}
# Ensure the Python environment for Giotto has been installed.
genv_exists <- Giotto::checkGiottoEnvironment()
if(!genv_exists){
# The following command need only be run once to install the Giotto environment.
Giotto::installGiottoEnvironment()
}
# Ensure Giotto Suite is installed.
if(!"GiottoData" %in% installed.packages()) {
pak::pkg_install("drieslab/GiottoData")
}
library(Giotto)
Piecewise creation is most convenient when assembling a fully custom giotto
analysis object. This method requires first loading the data in as Giotto-compatible subobjects, after which they can be directly appended to an empty giotto
object.
For a more complete introduction to the data and Giotto subobjects used here, see the point data Giotto object creation tutorial
# function to get a filepath from GiottoData
mini_viz_raw <- function(x) {
system.file(
package = "GiottoData",
file.path("Mini_datasets", "Vizgen", "Raw", x)
)
}
mini_viz_poly_path <- mini_viz_raw(file.path("cell_boundaries", "z0_polygons.gz"))
mini_viz_tx_path <- mini_viz_raw("vizgen_transcripts.gz")
poly_dt <- data.table::fread(mini_viz_poly_path)
viz_gpoly <- createGiottoPolygon(poly_dt)
tx_dt <- data.table::fread(mini_viz_tx_path)
tx_dt[, global_y := -global_y] # flip values to match polys
viz_gpoints <- createGiottoPoints(tx_dt)
giotto
object through appending subobjects
g <- giotto() # initialize empty gobject
g <- setGiotto(g, viz_gpoly)
g <- setGiotto(g, viz_gpoints)
force(g)
An object of class giotto
>Active spat_unit: cell
>Active feat_type: rna
dimensions : 559, 498 (features, cells)
[SUBCELLULAR INFO]
polygons : cell
features : rna
[AGGREGATE INFO]
Use objHistory() to see steps and params used
This is essentially the same object as the one created through createGiottoObjectSubcellular()
as shown in the previously mentioned tutorial.
Appending additional information in this manner can be used both when objects are created from scratch using giotto()
and when they are created through more guided approaches such as createGiottoObject()
and technology-specific convenience functions. This method of object creation and modification can be helpful for editing the object, adding additional modalities, or setting up objects for custom workflows.
4.4.1 (2024-06-14)
R version : aarch64-apple-darwin20
Platform: macOS 15.0.1
Running under
: default
Matrix products: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
LAPACK
:
locale1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
[
: America/New_York
time zone: internal
tzcode source
:
attached base packages1] stats graphics grDevices utils datasets methods base
[
:
other attached packages1] Giotto_4.1.5 GiottoClass_0.4.3
[
namespace (and not attached):
loaded via a [1] tidyselect_1.2.1 viridisLite_0.4.2 dplyr_1.1.4
4] GiottoVisuals_0.2.7 R.utils_2.12.3 fastmap_1.2.0
[7] SingleCellExperiment_1.26.0 lazyeval_0.2.2 digest_0.6.37
[10] lifecycle_1.0.4 terra_1.7-78 magrittr_2.0.3
[13] compiler_4.4.1 rlang_1.1.4 tools_4.4.1
[16] yaml_2.3.10 igraph_2.1.1 utf8_1.2.4
[19] data.table_1.16.2 knitr_1.48 S4Arrays_1.4.0
[22] htmlwidgets_1.6.4 reticulate_1.39.0 DelayedArray_0.30.0
[25] abind_1.4-8 withr_3.0.1 purrr_1.0.2
[28] BiocGenerics_0.50.0 R.oo_1.26.0 grid_4.4.1
[31] stats4_4.4.1 fansi_1.0.6 colorspace_2.1-1
[34] ggplot2_3.5.1 scales_1.3.0 gtools_3.9.5
[37] SummarizedExperiment_1.34.0 cli_3.6.3 rmarkdown_2.28
[40] crayon_1.5.3 generics_0.1.3 rstudioapi_0.16.0
[43] httr_1.4.7 rjson_0.2.21 zlibbioc_1.50.0
[46] parallel_4.4.1 XVector_0.44.0 matrixStats_1.4.1
[49] vctrs_0.6.5 Matrix_1.7-0 jsonlite_1.8.9
[52] IRanges_2.38.0 S4Vectors_0.42.0 ggrepel_0.9.6
[55] scattermore_1.2 magick_2.8.5 GiottoUtils_0.2.1
[58] plotly_4.10.4 tidyr_1.3.1 glue_1.8.0
[61] codetools_0.2-20 cowplot_1.1.3 gtable_0.3.5
[64] GenomeInfoDb_1.40.0 GenomicRanges_1.56.0 UCSC.utils_1.0.0
[67] munsell_0.5.1 tibble_3.2.1 pillar_1.9.0
[70] htmltools_0.5.8.1 GenomeInfoDbData_1.2.12 R6_2.5.1
[73] evaluate_1.0.0 lattice_0.22-6 Biobase_2.64.0
[76] png_0.1-8 R.methodsS3_1.8.2 backports_1.5.0
[79] SpatialExperiment_1.14.0 Rcpp_1.0.13 SparseArray_1.4.1
[82] checkmate_2.3.2 colorRamp2_0.1.0 xfun_0.47
[85] MatrixGenerics_1.16.0 pkgconfig_2.0.3 [